85,101.38

Penulis:

- Ratna Jatnika •
- Mustofa Haffas •
- Ahmad Gimmy Prathama •
- Fitriani Yustikasari Lubis •

BELAJAR ANALISIS KORELASI DENGAN UNPAD SAS ONLINE

PENERBIT

Belajar Analisis Korelasi dengan UNPAD SAS Online

Belajar Analisis Korelasi dengan UNPAD SAS Online

Ratna Jatnika, Dr. M.T. Mustofa Haffas, S.H. M.Kom. Ahmad Gimmy Prathama, Dr. M.Si. Fitriani Yustikasari Lubis, Dr. M.Psi.

Copyright @2022 Ratna Jatnika, Mustofa Haffas, Ahmad Gimmy Prathama, Fitriani Yustikasari Lubis

Hak cipta dilindungi oleh undang-undang. Dilarang mengutip atau meperbanyak sebagian atau seluruh isi buku tanpa izin tertulis dari Penerbit.

Cetakan 1, Agustus 2022 Diterbitkan oleh Unpad Press Grha Kandaga, Perpustakaan Unpad Lt 1 Jl. Raya Bandung Sumedang Km 21 Bandung 45363 e-mail : press@unpad.ac.id /pressunpad@gmail.com Tlp. 022-84288806 psw 3806 http://press.unpad.ac.id Anggota IKAPI dan APPTI

Editor Ahli: Erna Maulina, Elly Rasmikayati Editor Bahasa: Perancang Sampul: Didin M. Setiawan

Perpustakaan Nasional : Katalog Dalam Terbitan (KDT)

Ratna Jatnika, Mustofa Haffas, Ahmad Gimmy Prathama, Fitriani Yustikasari Lubis Belajar Analisis Korelasi dengan UNPAD SAS Online/ Editor: Erna Maulina, Elly Rasmikayati; --Cet. 1 – Bandung; Unpad Press; 2022 x, 120 h.; 25 cm

ISBN 978-623-352-226-7

I. Judul II. Ratna Jatnika, Mustofa Haffas, Ahmad Gimmy Prathama, Fitriani Yustikasari Lubis

Memahami suatu teori belum sempurna sebelum kita menerapkannya. Melalui penerapannya, gagasan-gagasan dan logika-logika dalam suatu teori akan dapat dipahami secara baik dan akan menumbuhkan kemauan untuk berfikir kreatif.

Kata Pengantar

Unpad SAS (Seri Analisis Statistik) adalah software yang dikembangkan oleh tim peneliti dari Unpad dengan tujuan untuk pengolahan data statistik yang banyak digunakan dalam penelitian bidang Psikologi dan ilmu Sosial lainnya, akan tetapi belum tersedia dalam software-software pengolahan data statistik yang ada, seperti SPSS, SAS, dan lain-lain.

Unpad SAS diharapkan akan menjadi perangkat lunak analisis data Statistik yang murah, cepat, akurat, dan komprehensif bagi pengajaran mata kuliah Statistika. Software ini juga akan mengurangi ketergantungan terhadap perangkat lunak yang dikembangkan pihak asing dan mengurangi maraknya pembajakan terhadap perangkat lunak analisis Statistik.

Buku ajar yang dilengkapi software Unpad SAS ini akan memudahkan mahasiswa untuk belajar Statistika karena dilengkapi dengan contoh perhitungan secara manual dan juga cara menggunakan Unpad SAS dengan petunjuk yang jelas dan sederhana. Sebagai akibatnya mahasiswa akan tertarik untuk belajar Statistika karena pembelajaran Statistika menggunakan Unpad SAS dapat dilakukan secara mudah, murah, cepat, dan akurat.

Buku ini merupakan Edisi Pertama dari rangkaian hasil penelitian yang sedang kami lakukan. Oleh karena itu buku ini baru memuat tiga Bab, yaitu Petunjuk Instalasi Unpad SAS, Manajemen Basisdata, dan Statistik Deskriptif. Namun demikian, software Unpad SAS yang melengkapi buku ini telah memuat beberapa analisis lain yang belum didokumentasikan karena masih dalam tahap pengembangan.

Masukan dari pengguna sangat diharapkan untuk menyempurnakan pengembangan Unpad SAS sebagai suatu media pembelajaran Statistika.

Semoga buku ajar dan software Unpad SAS akan menambah perbendaharaan buku ajar dalam bidang Statistika yang dapat diaplikasikan seluasluasnya bagi perkembangan ilmu pengetahuan di Indonesia.

Bandung, Agustus 2022

Para penulis

Daftar Isi

Kata I	Pengantar	vi
Dafta	ar Isi	.vii
1 Pen	dahuluan	1
Α.	Registrasi Unpad SAS	1
В.	Memulai Unpad SAS	3
С.	Membuka dan Menutup Tabel	3
D.	Mengakses Tabel Contoh	10
2 Ana	lisis Korelasi	13
Α.	UJI CRAMER'S V, TSUPROW'S T, DAN PEARSON'S C	14
	Contoh Masalah 2.1	15
	Pengerjaan Secara Manual	15
	Pengerjaan dengan Unpad SAS	18
	Contoh Masalah 2.2	20
	Pengerjaan Secara Manual	21
	Pengerjaan dengan Unpad SAS	24
В.	UJI GAMMA	26
	Contoh Masalah 2.3	26
	Pengerjaan Secara Manual	27
	Pengerjaan dengan Unpad SAS	29
	Contoh Masalah 2.4	32
	Pengerjaan Secara Manual	33
	Pengerjaan dengan Unpad SAS	35
C.	UJI SPEARMAN	37
	Contoh Masalah 2.5	37
	Pengerjaan Secara Manual	38
	Pengerjaan dengan Unpad SAS	40
	Contoh Masalah 2.6	43
	Pengerjaan Secara Manual	44
	Pengerjaan dengan Unpad SAS	47

D. UJI THETA	49
Contoh Masalah 2.7	
Pengerjaan Secara Manual	50
Pengerjaan dengan Unpad SAS	52
Contoh Masalah 2.8	55
Pengerjaan Secara Manual	56
Pengerjaan dengan Unpad SAS	58
E. UJI ETA	60
Contoh Masalah 2.9	60
Pengerjaan Secara Manual	61
Pengerjaan dengan Unpad SAS	64
Contoh Masalah 2.10	66
Pengerjaan Secara Manual	68
Pengerjaan dengan Unpad SAS	70
F. UJI JASPEN'S M	73
Contoh Masalah 2.11	73
Pengerjaan Secara Manual	74
Pengerjaan dengan Unpad SAS	78
Contoh Masalah 2.12	
Pengerjaan Secara Manual	
Pengerjaan dengan Unpad SAS	
G. UJI PEARSON PRODUCT MOMENT	89
Contoh Masalah 2.13	
Pengerjaan Secara Manual	
Pengerjaan dengan Unpad SAS	91
Contoh Masalah 2.14	95
Pengerjaan Secara Manual	95
Pengerjaan dengan Unpad SAS	97
3 Latihan Soal	100
Daftar Pustaka	101
Lampiran	102

1.	Tabel Distribusi Chi Square	.102
1.	Tabel Distribusi F	.104
2.	Tabel Distribusi Normal	.106
3.	Tabel R	.108
4.	Tabel Ordinat Normal	.110

1 Pendahuluan

A. REGISTRASI UNPAD SAS

Dalam melakukan registrasi Unpad SAS berbasis web, terdapat beberapa tahapan yang harus dilakukan:

- Buka https://m.unpad-sas.id pada laman web browser Anda.
- Klik tombol registrasi, seperti ditunjukkan di samping kanan, pada bagian ujung kanan-atas halaman web.
- Perintah tersebut akan menampilkan kotak dialog sebagai berikut.

REGISTRATION		×
Full Name: Email:		7
Password:		_
Retype Passwd:		
(Register	

Gambar 1.1 Tampilan menu registrasi Unpad SAS

 Masukan nama lengkap untuk *Full Name*, email yang telah Anda miliki untuk *Email*, dan *password* yang ingin Anda gunakan untuk *Password*. Setelah itu klik tombol <**Register**>. Perintah tersebut akan menampilkan kotak dialog seperti berikut.

REGISTRATION × Registrasi sukses. Silahkan buka email Anda dan ikuti petunjuk di dalamnya untuk mengaktifkan akun Anda.

Gambar 1.2 Tampilan dialog registrasi Unpad SAS telah sukses

• Periksa Email yang Anda gunakan untuk melakukan registrasi. Anda akan mendapatkan email dari Unpad SAS dengan tampilan seperti berikut.

	Aktifasi akun UNPAD SAS Indox x
?	sas@id-ddns.net to me, mustofa →
	Dengan hormat,
	Terima kasih telah melakukan registrasi dan mau bergabung dengan kami. Berikut adalah informasi pendaftaran anda:
	PIN: <u>madpir255@gmail.com</u> Password:
	Untuk mengaktifkan akun anda, silahkan anda <u>klik link ini</u> .
	atau salin link https://m.unpad-sas.id/activation.php?act=a56639c88ea7d474ffc65421d00dc15c274
	dan buka itu di dalam web browser yang anda gunakan.
	Mohon diperhatikan: Anda memiliki 7 (tujuh) hari untuk mengaktifkan akun anda. Jika dalam tujuh hari belum diaktifkan, akun anda akan dihapus.
	Hormat Kami,
	Mustofa Haffas

Gambar 1.3 Tampilan Email aktivasi Unpad SAS

- Untuk melakukan aktivasi, klik link yang bertuliskan '<u>klik link ini</u>' atau salin link yang tertera kemudian buka dalam *web browser* yang Anda gunakan. Anda memiliki 7 (tujuh) hari untuk mengaktifkan akun Anda. Jika dalam tujuh hari belum diaktifkan, akun Anda akan dihapus.
- Akun Anda telah teraktivasi dan siap untuk digunakan.

B. MEMULAI UNPAD SAS

Apabila Anda telah melakukan registrasi, penting untuk melakukan Login terlebih dahulu sebelum memulai aktivitas Anda di Unpad SAS. Lakukan langkah berikut untuk memulai Unpad SAS.

- Buka https://m.unpad-sas.id pada laman web browser Anda.
- Klik tombol Login, seperti ditunjukkan di samping kanan, pada bagian bagian kanan-atas halaman *web*.

• Perintah tersebut akan menampilkan kotak dialog sebagai berikut.

LOGIN	×
Email or PIN:	
Password:	
Login Reset Pas	sword

Gambar 1.4 Tampilan menu Login Unpad SAS

- Masukan email yang telah Anda daftarkan untuk *Email or PIN* dan *password* Anda untuk *Password*. Setelah itu klik tombol <Login>.
- Anda telah selesai melakukan Login dan dapat memulai aktivitas Anda di Unpad SAS.

C. MEMBUKA DAN MENUTUP TABEL

Dalam membuat tabel yang akan Anda gunakan untuk mengolah data pada Unpad SAS, terdapat beberapa hal yang perlu diperhatikan.

- Gunakan excel dalam membuat tabel.
- Pastikan variabel pertama atau kolom paling kiri berjudul ID. Variabel ini tidak diperhitungkan sebagai variabel data namun harus ada sebagai nomor urut data.
- Judul variabel atau kolom selanjutnya **tidak boleh** mengandung **spasi** seperti 'Jenis Kelamin' atau 'Shift 1'.

 Save file dengan format .xls. Apabila jumlah data lebih dari 500, maka gunakan format .txt.

Lakukan langkah-langkah berikut untuk membuka *file*/tabel yang telah ada.

• Klik menu *File*, pilih submenu *Import Table* seperti pada gambar di bawah ini.

UN	PAD	SAS			
File	Edit	View	Data	Analyze	Help
New					
Open					
Close					
Save					
Save as					
Import ta	able				
Export ta	able				
Example	es				

Gambar 1.5

Tampilan menu File dan submenu Import Table di Unpad SAS

• Perintah tersebut akan menampilkan kotak seperti dialog sebagai berikut.

Gambar 1.6 Tampilan submenu Import Table di Unpad SAS

 Klik tombol *Open File*, seperti ditunjukkan di samping kanan, dengan ikon sebagai berikut

- Pilih File yang akan Anda gunakan.
- Perintah tersebut akan menampilkan kotak dialog *Import Table* berisi tabel Anda dengan contoh sebagai berikut.

Impo	ort Tal	ole	
	2		
ID	S1	S2	S 3
1	76	70	75
2	71	65	77
3	56	57	74
4	67	60	59
5	70	56	76
6	77	71	73
7	45	47	78
8	60	67	62
9	63	60	75
10	60	59	74
11	61	57	60
12	56	60	75
13	59	54	70
14	74	72	71
15	66	63	65
_	_	_	_

Gambar 1.7 Tampilan tabel yang telah dipilih di Unpad SAS

- Pastikan file yang Anda gunakan tidak memiliki baris atau kolom yang kosong dan hanya berisi data yang akan digunakan.
- Klik tombol *Create new table*, seperti ditunjukkan di samping kanan, dengan ikon sebagai berikut

Perintah tersebut akan menampilkan kotak dialog Open/Delete
 Table berisi tabel yang telah Anda *import* dengan contoh sebagai berikut.

Gambar 1.8 Kotak dialog *Open/Delete Table* di Unpad SAS

- Klik pada sebelah kiri nama tabel yang akan digunakan.
- Perintah tersebut akan menampilkan tabel yang telah dipilih.

l	JN	P/	AD)	AS				
1	File	E	Edit	,	View	Data	Analyze	Help	
ID:	1								
	ID	S1	S2	S 3					_
	1	76	70	75					
	2	71	65	77					
	3	56	57	74					
	4	67	60	59					
	5	70	56	76					
	6	77	71	73					
	7	45	47	78					
	8	60	67	62					
	9	63	60	75					
	10	60	59	74					
	11	61	57	60					
	12	56	60	75					
	13	59	54	70					
	14	74	72	71					
	15	66	63	65					

Gambar 1.9 Tabel yang telah diinput di Unpad SAS

• Tabel Anda telah dapat digunakan.

Jika Anda telah selesai bekerja dengan suatu tabel maka biasakan untuk menutup tabel tersebut. Lakukan langkah berikut untuk keperluan tersebut.

 Klik menu *File* dan pilih submenu *Close*, seperti ditunjukkan pada gambar di bawah ini.

UNPAD SAS			
File Edit View	Data	Analyze	Help
New			
Open			
Close			
Save			
Save as			
Import table			
Export table			
Examples			
	•		

Gambar 1.10

Tampilan menu File dan submenu Close di Unpad SAS

Apabila Anda ingin membuka kembali tabel yang telah Anda *import* sebelumnya, lakukan langkah berikut.

 Klik menu *File* dan pilih submenu *Open*, seperti ditunjukkan pada gambar di bawah ini.

UN	PAD	SAS			
File	Edit	View	Data	Analyze	Help
New					
Open					
Close					
Save					
Save as					
Import ta	able				
Export ta	able				
Example	2S				

Gambar 1.11 Tampilan menu *File* dan submenu *Open* di Unpad SAS

• Perintah tersebut akan menampilkan kotak dialog *Open/Delete Table* berisi tabel yang telah Anda *import* dengan contoh sebagai berikut.

	Table Name	
Ьŵ	np_2rel(1)	-
口言	np_krel_1(1)	

Gambar 1.12 Kotak dialog *Open/Delete Table* di Unpad SAS

- Klik pada sebelah kiri nama tabel yang akan digunakan
- Perintah tersebut akan menampilkan tabel yang telah Anda pilih dengan contoh sebagai berikut.

l	ЛГ	P/	AD)	AS				
1	File	E	Edit	`	View	Data	Analyze	Help	
ID:	1								
	ID	S1	S2	S 3					
	1	76	70	75					
	2	71	65	77					
	3	56	57	74					
	4	67	60	59					
	5	70	56	76					
	6	77	71	73					
	7	45	47	78					
	8	60	67	62					
	9	63	60	75					
	10	60	59	74					
	11	61	57	60					
	12	56	60	75					
	13	59	54	70					
	14	74	72	71					
	15	66	63	65					

Gambar 1.13 Tabel yang telah diinput di Unpad SAS

Tabel Anda telah dapat digunakan.

D. MENGAKSES TABEL CONTOH

Agar lebih memahami isi dari modul ini, terdapat contoh kasus yang disajikan pada setiap sub-bab. Untuk membantu Anda dalam mengerjakan contoh kasus tersebut menggunakan Unpad SAS, tabel pada setiap contoh kasus dapat Anda akses dengan langkah berikut.

Pastikan Anda telah melakukan Login. Klik menu *File* dan pilih submenu *Examples*, seperti ditunjukkan pada gambar di bawah ini.

UN	PAD	SAS			
File	Edit	View	Data	Analyze	Help
New					
Open					
Close					
Save					
Save as					
Import ta	able				
Export ta	able				
Example	s				

Gambar 1.14 Tampilan menu *File* dan submenu *Examples* di Unpad SAS

• Perintah tersebut akan menampilkan tampilan seperti gambar berikut.

UNPAD SAS			
File Edit View	Data Analyze Help		
ppdb.xls pm_tpt_sample.xls pm_tpt_1.xls pm_sample1.xls	pm_mpt-2.xls pm_mpt-1.xls pm_mpt-1.txt pegawai-1.xls	np_krel_1.xls np_kinde_2.xls np_kinde_1.xls np_chi.kls	cor_jaspen.xls cor_gamma.xls cor_cramer.xls cor-test 1.evs

Gambar 1.15 Tampilan submenu *examples* di Unpad SAS

• Klik nama tabel yang akan Anda gunakan. Tabel tersebut akan segera terunduh pada perangkat Anda dan dapat digunakan

2 Analisis Korelasi

Pada penelitian, terdapat beberapa tipe studi berdasarkan tipe penyelidikannya: (1) studi komparatif, (2) studi kausal, dan (3) studi korelasional. Pada modul ini, akan dipelajari tipe yang ketiga yaitu studi korelasional. Studi korelasional adalah studi yang dilakukan apabila peneliti tertarik untuk menggambarkan variabel-variabel yang penting yang berhubungan pada suatu masalah.

Pada studi korelasi, dilakukan analisis korelasi untuk menguji apakah terdapat hubungan yang signifikan antara dua variabel. Jenis analisis yang digunakan bergantung pada skala pengukuran masing-masing variabel, yang dapat dilihat pada tabel berikut.

74							
	Nominal	Ordinal	Interval/Rasio				
Nominal	 Pearson's C Lambda Cramer's V Phi Tetrachoric Tsuprow 	Theta	Eta				
Ordinal		 Gamma Kendall's tau Sommer's dyx Spearman's rho 	Jaspen's M				
Interval/Rasio			Pearson's r				

Tabel 2.1 Analisis Korelasi berdasarkan Skala Pengukuran

Skala pengukuran dapat dibagi atas: skala pengukuran nominal, ordinal, interval, dan rasio dengan penjelasan sebagai berikut:

- Skala pengukuran nominal memiliki fungsi bilangan sebagai simbol untuk membedakan suatu keadaan dengan keadaan lainnya, pada skala ini tidak berlaku operasi aritmatika.
- Skala pengukuran ordinal memiliki fungsi bilangan sebagai simbol untuk membedakan sebuah keadaan dengan keadaan lainnya, serta untuk

mengurutkan (*ranking*) kualitas karakteristik responden. Pada skala ini juga tidak berlaku operasi aritmatika.

- Skala pengukuran interval memiliki fungsi bilangan sebagai simbol untuk membedakan sebuah keadaan dengan keadaan lainnya, mengurutkan (*ranking*) kualitas karakteristik responden, dan memperlihatkan jarak/interval. Pada skala ini berlaku operasi aritmatika dan memiliki ciri utama bahwa "titik nol" bukan merupakan titik absolut, tetapi merupakan titik yang ditentukan sesuai perjanjian.
- Skala pengukuran rasio memiliki fungsi bilangan sebagai simbol untuk membedakan sebuah keadaan dengan keadaan lainnya, mengurutkan (*ranking*) kualitas karakteristik responden, memperlihatkan jarak/interval, serta memiliki "titik nol" yang mutlak/absolut. Pada skala ini berlaku semua operasi aritmatika.

Besarnya hubungan antar dua variabel disebut juga koefisien korelasi. Akan tetapi khusus untuk besarnya hubungan antar dua variabel yang memiliki skala pengukuran nominal, terkadang disebut juga sebagai koefisien asosiasi. Besarnya koefisien korelasi adalah $-1 \le R \le +1$. Adapun besarnya koefisien asosiasi adalah $0 \le R \le +1$. Salah satu kriteria yang bisa digunakan untuk kategorisasi koefisien korelasi adalah kriteria Guilford:

Nilai	Kriteria Guilford
< 0,20	Tidak ada korelasi
0,20 ≤ 0,40	Korelasi rendah
0,40 ≤ 0,70	Korelasi sedang
0,70 ≤ 0,90	Korelasi tinggi
0,90 ≤ 1,00	Korelasi tinggi sekali
1,00	Korelasi sempurna

A. UJI CRAMER'S V, TSUPROW'S T, DAN PEARSON'S C

Uji ini dapat digunakan untuk menguji hubungan antara dua variabel yang memiliki skala pengukuran paling sedikit nominal atau berbentuk data kategori.

Untuk melakukan pengujian dengan tepat, maka kita harus memenuhi beberapa asumsi. Pertama, pastikan data berasal dari sampel acak. Lalu seluruh jenis skala yang digunakan bersifat nominal atau berbentuk kategori.

Contoh Masalah 2.1

Suatu penelitian dilakukan untuk mengetahui apakah ada hubungan antara jenis pekerjaan yang dipilih dengan jenis kelamin. Pengambilan data terhadap 18 orang memberikan hasil sebagai berikut.

Tabol 2.2

	Data Contoh Masalah 2.1												
ID	JK	JP		ID	JK	JP		ID	JK	JP	ID	JK	JP
1	1	1		6	1	2		11	2	1	16	2	2
2	1	1		7	1	3		12	2	1	17	2	3
3	1	1		8	1	3		13	2	2	18	2	3
4	1	2		9	2	1		14	2	2			
5	1	2		10	2	1		15	2	2			
KETE	RANG	AN											

JK (Jenis Kelamin): 1=Laki-laki, 2=Perempuan JP (Pekerjaan): 1=PNS, 2=Swasta, 3=Lainnya

Dengan taraf nyata 10%, 5%, dan 1% ujilah apakah terdapat hubungan antara jenis pekerjaan yang dipilih dengan jenis kelamin?

Pengerjaan Secara Manual

- 1. Rumusan hipotesis
 - ${\cal H}_0$: Tidak terdapat hubungan antara jenis pekerjaan yang dipilih dengan jenis kelamin
 - H_1 : Terdapat hubungan antara jenis pekerjaan yang dipilih dengan jenis kelamin.
- 2. Statistik Uji
 - Tetapkan:
 - V1 = nama variabel yang akan diuji
 - *V2* = nama variabel kelompok

Untuk contoh masalah di atas, V1 = JP (Jenis Pekerjaan) dan V2 = JK (Jenis Kelamin).

- Hitunglah:
 - N = jumlah data
 - c = jumlah kategori JP
 - r = jumlah kategori *JK*

Untuk contoh masalah di atas, N = 18, c = 3, r = 2, dan df = 2

• Buat tabel kontingensi *V2-V1* dengan nilai O (observasi) berupa frekuensi pasangan *V2-V1*.

J , , ,								
	j		Total					
	i 🔪	1		С	Total			
	1	011		O_{1j}	m_1			
V2								
	r	O_{r1}		O_{ij}	m_r			
Total		n_1		n_c	Ν			

Tabel 2.3 Tabel Kontingensi Cramer's V, Tsuprow's T, dan Pearson's C

$$m_r = \sum_{j=1}^{c} O_{rj}$$
$$n_c = \sum_{i=1}^{r} O_{ic}$$

Untuk contoh masalah di atas, tabel kontingensinya adalah:

Tabel Kontingensi Contoh Masalah 2.1							
			Tatal				
	PNS	Swasta	Lainnya	Total			
lania Kalamin	Laki-laki	3	3	2	8		
Jenis Kelamin	Perempuan	4	4	2	10		
Total	7	7	4	18			

Tabel 2.4 Tabel Kontingensi Contoh Masalah 2.1

 Buat tabel bantu untuk mendapatkan nilai E (ekspektasi) dari setiap nilai O (observasi).

Tabel Nilai E Cram	Tabel 2.5 Tabel Nilai E Cramer's V, Tsuprow's T, dan Pearson's C						
	V1						
1 c							

				C
	1	<i>E</i> ₁₁	<i>E</i> ₁₂	E_{1j}
V2				
	r	E_{r1}		E_{rc}

$$E_{ij} = \frac{m_i * n_j}{N}$$

Untuk contoh masalah di atas, tabel bantunya adalah:

Tabel 2.6 Tabel Nilai E Contoh Masalah 2.1 Pekerjaan

		PNS	Swasta	Lainnya
lania Kalamin	Laki-laki	3,1111	3,1111	1,7778
Jenis Kelamin	Perempuan	3,8889	3,8889	2,2222

• Hitung Chi Kuadrat (χ^2) dengan rumus

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}}$$

Untuk contoh masalah di atas, maka perhitungannya adalah sebagai berikut

$$\chi^{2} = 0,0040 + 0,0040 + 0,0278 + 0,0032 + 0,0032 + 0,0222$$
$$\chi^{2} = 0,0643$$

• Cari χ^2 tabel untuk $df = 2 \text{ dan } \alpha = 0.10, 0.05, \text{ dan } 0.01 \text{ dari tabel chi-square (lihat Lampiran 1).}$

$$\chi^{2} (2; 0, 10) = 4,60517$$
$$\chi^{2} (2; 0,05) = 5,99146$$
$$\chi^{2} (2; 0,01) = 9,21034$$

- 1. Kriteria Uji
 - Kriteria uji tolak H₀ jika χ^2 hitung $\geq \chi^2$ tabel.
 - Jika H₀ ditolak, hitung koefisien korelasi dengan rumus berikut.

$$C = \sqrt{\frac{X^2}{N + X^2}}$$
$$T = \sqrt{\frac{X^2}{N\sqrt{(r-1)(c-1)}}}$$
$$V = \sqrt{\frac{X^2}{N(a-1)}}$$

Keterangan :

a = nilai baris atau kolom terkecil

2. Hasil Uji

Untuk contoh kasus di atas, dengan nilai $\alpha = 10\%$, 5%, dan 1%, maka χ^2 hitung < χ^2 tabel. Maka H₀ diterima dan tidak perlu menghitung koefisien korelasi.

3. Kesimpulan

Dapat disimpulkan bahwa "Tidak terdapat hubungan antara jenis pekerjaan yang dipilih dengan jenis kelamin".

Pengerjaan dengan Unpad SAS

• Open tabel data menu File->Open

Gambar 2.1 Tampilan menu *File* di Unpad SAS

Buka file data dengan klik <ikon open file>, pada nama tabel yang ingin digunakan.

Tampilan dialog Open/Delete Table di Unpad SAS

• Pilih menu Analyze->Correlate->Cramer V, Tsuprow, and Pearson Analysis

l	JN	P/	٩D	SAS			
1	File	١	View	Data	Analyze	Help	
ID:	1				Descriptive S	Statistic	
	ID	ЈК	JP		Correlate		Theta Analysis
_	1	1	1		Conclute		maay anayolo
_	2	1	1		Nonparametr	ric Tests	Eta Analysis
_	3	1	1		0		
_	4	1	2		Sampling		Jaspen's M Analysis
_	5	1	2		Psychometric	c Test	Cramer V, TSuprow, and
_	0	1	2				Pearson Analysis
_	/	1	3				Spearman Analysis
_	8	1	3				Spearman Analysis
_	9	2	1				Gamma Analysis
_	10	2	1				
_	12	2	1				Pearson Analysis
	12	2	1				
_	14	2	2				
	15	2	2				
_	16	2	2				
_	17	2	2				
	18	2	3				

Gambar 2.3 Tampilan tabel yang telah diinput dan menu *Analyze*

 Pilih variabel Jenis Kelamin (JK) untuk Variable 1 dan Jenis Pekerjaan (JP) untuk Variable 2, yaitu seperti pada gambar di bawah ini.

Correlation: Cramer V Analysis X						
Variable List Variable #1:	•					
Variable #2:	•					
*	¥					
OK Reset Cancel Help						
Authors: Ratna Jatnika & Mustofa Haffas	Version 1.3.2.6					

Gambar 2.4 Tampilan Analisis Cramer V di Unpad SAS

• Klik **<OK>**. Setelah itu akan muncul output seperti gambar di bawah ini

Correlation Analysis

Cramer V, TSuprow T, & Pearson C

Data source: Cramer1

Variables: JK, JP

Contingency Table							
IV		JP		Tetal			
јк	[1]	Total					
[1]	3	3	2	8			
[2]	4	4	2	10			
Total	7	7	4	18			

Expectation Table

17		· · ·	
r	[1]	[2]	[3]
1]	3.1111	3.1111	1.7778
21	3.8889	3.8889	2.2222

Test Statistic	s

N		18
с		3
r		2
df		2
χ ²		0.0643
$\chi^{2}_{(2; 0.10)}$	1-tailed	4.6052
$\chi^{2}_{(2; 0.05)}$	1-tailed	5.9915
χ ² (2; 0.01)	1-tailed	9.2103

Correlation Coefficient					
Pearson C	0.0597				
Tsuprow T	0.0503				
Cramer V	0.0598				

Gambar 2.5 Tampilan output Cramer V, Tsuprow T, dan Pearson C di Unpad SAS

Contoh Masalah 2.2

Suatu penelitian dilakukan untuk mengetahui apakah ada hubungan antara genre film kesukaan dengan jenis kelamin. Pengambilan data terhadap 35 orang memberikan hasil sebagai berikut.

ID	JK	Genre	ID	JK	Genre	ID	JK	Genre
1	1	1	13	2	2	25	1	1
2	1	3	14	2	1	26	1	3
3	1	3	15	2	3	27	1	2
4	1	1	16	2	2	28	2	1
5	1	1	17	2	4	29	2	2
6	1	1	18	2	4	30	2	3

Tabel 2.7 Data Contoh Masalah 2.2

7	1	4	19	2	3	31	2	2
8	1	3	20	2	2	32	2	2
9	1	4	21	1	1	33	2	3
10	1	2	22	1	1	34	2	1
11	2	2	23	1	4	35	2	2
12	2	2	24	1	3			

KETERANGAN

JK (Jenis Kelamin): 1=Laki-laki, 2=Perempuan Genre : 1=Horor, 2=Roman, 3=Komedi, 4=Fantasi

Dengan taraf nyata 10%, 5%, dan 1%, ujilah apakah terdapat hubungan antara genre film kesukaan dengan jenis kelamin?

Pengerjaan Secara Manual

- 1. Rumusan hipotesis
 - ${\cal H}_0$: Tidak terdapat hubungan antara genre film kesukaan dengan jenis kelamin
 - H_1 : Terdapat hubungan antara genre film kesukaan dengan jenis kelamin.
- 2. Statistik Uji
 - Tetapkan V1 dan V2.
 - *V1* = Genre film kesukaan
 - V2 = Jenis kelamin (JK)
 - Hitunglah jumlah data, jumlah kategori tiap-tiap variabel, dan df.
 - N = 35
 - c = 4
 - r = 2
 - *df* = 3
 - Buat tabel kontingensi *V2-V1* dengan nilai O (observasi) berupa frekuensi pasangan *V2-V1*.

			V1				
	i i	1		С	Total		
	1	011		O_{1j}	m_1		
V2	:						
	r	O_{r1}		O_{ij}	m_r		
Tot	al	n_1		n_c	Ν		

Tabel 2.8 Tabel Kontingensi Cramer's V, Tsuprow's T, dan Pearson's C

$$m_r = \sum_{j=1}^{c} O_{rj}$$
$$n_c = \sum_{i=1}^{r} O_{ic}$$

• Untuk contoh masalah di atas, tabel kontingensinya adalah:

Tabel 2.9 Tabel Kontingensi Contoh Masalah 2.2

	Genre				Total	
		Horor	Roman	Komedi	Fantasi	Total
Jenis Kelamin	Laki laki	7	1	5	4	17
	Perempuan	3	9	4	2	18
Total		10	10	9	6	35

 Buat tabel bantu untuk mendapatkan nilai E (ekspektasi) dari setiap nilai O (observasi).

Tabel 2.10 Tabel Nilai E Cramer's V, Tsuprow's T, dan Pearson's C

		V1				
		1		С		
	1	<i>E</i> ₁₁	E_{12}	E_{1j}		
V2						
	r	E_{r1}		E_{rc}		

$$E_{ij} = \frac{m_i * n_j}{N}$$

Untuk contoh masalah di atas, tabel bantunya adalah:

Tabel 2.11
Tabel Nilai E Contoh Masalah 2.2

	Genre				
		Horor	Roman	Komedi	Fantasi
Ionia Kalamin	Laki laki	4.8571	4.8571	4.3714	2.9143
	Perempuan	5.1429	5.1429	4.6286	3.0857

• Hitung Chi Kuadrat (χ^2) untuk contoh masalah di atas, maka perhitungannya adalah sebagai berikut

$$\chi^{2} = 0.945424 + 3.06298 + 0.0903916 + 0.404469 + 0.892885 + 2.89277 + 0.0853688 + 0.382002$$

$$\chi^{2} = 8,7564$$

• Cari χ^2 tabel untuk df = 3 dan α = 0.10, 0.05, dan 0.01 dari tabel chisquare (lihat Lampiran 1).

$$\chi^{2}_{(3; 0,10)} = 6,2514$$
$$\chi^{2}_{(3; 0,05)} = 7,8147$$
$$\chi^{2}_{(3; 0,01)} = 11,3449$$

- 3. Kriteria Uji
 - Kriteria uji tolak H_0 jika χ^2 hitung $\geq \chi^2$ tabel.
 - Jika H₀ ditolak, hitung koefisien korelasi dengan rumus berikut.

$$C = \sqrt{\frac{X^2}{N + X^2}}$$
$$T = \sqrt{\frac{X^2}{N\sqrt{(r-1)(c-1)}}}$$
$$V = \sqrt{\frac{X^2}{N(a-1)}}$$

Keterangan :

a = nilai baris atau kolom terkecil

- 4. Hasil Uji
 - Untuk contoh kasus di atas, dengan nilai $\alpha = 0.10$ dan 0.05, χ^2 hitung > χ^2 tabel, maka H₀ ditolak. Sementara dengan nilai $\alpha = 0.01$, χ^2 hitung < χ^2 tabel., maka H₀ diterima.
 - Untuk H_0 ditolak dengan nilai α = 0.10 dan 0.05, maka perhitungannya adalah:

$$C = \sqrt{\frac{8,7564}{35+8,7564}} = 0,44$$
$$T = \sqrt{\frac{8,7564}{35\sqrt{(2-1)(4-1)}}} = 0,38$$
$$V = \sqrt{\frac{8,7564}{35(2-1)}} = 0,50$$

5. Kesimpulan

Dapat disimpulkan bahwa dengan taraf nyata 10% dan 5%, terdapat hubungan antara genre film yang paling disukai dengan jenis kelamin. Sementara itu, pada taraf nyata 1%, tidak terdapat hubungan antara genre film yang paling disukai dengan jenis kelamin.

Pengerjaan dengan Unpad SAS

• Open tabel data menu File->Open

Gambar 2.6 Tampilan menu *File* di Unpad SAS

Buka file data dengan klik <ikon open file>, pada nama tabel yang ingin digunakan.

Open/Delete Table					
	Table Name				
Ъŵ	Cramer2	^			

Gambar 2.7 Tampilan dialog *Open/Delete Table* di Unpad SAS

Pilih menu Analyze->Correlate->Cramer V, Tsuprow, and Pearson Analysis

UNPAD SAS							
	File	'	View	Data	Analyze	Help	
ID: 1		Descriptive Statistic					
	ID	JK	GENRE		Correlate		Theta Analysis
_	2	1	3				
	3	1	3		Nonparametric Tests		Eta Analysis
	4	1	1]	Sampling		Jaspen's M Analysis
	5	1	1		Psychometric Test		Cramer V, TSuprow, and
_	5	1	1		- ¹		Pearson Analysis
_	8	1	3				Spearman Analysis
	9	1	4				Commo Analysia
	10	1	2				Gamma Analysis
	11	2	2				Pearson Analysis
	12	2	2				
_	13	2	2	-			
	15	2	3				
	16	2	2				
	17	2	4	1			
	10	2	1				

Gambar 2.8 Tampilan tabel yang telah diinput dan menu *Analyze*

 Pilih variabel Jenis Kelamin (JK) untuk Variable 1 dan Jenis Pekerjaan (JP) untuk Variable 2, yaitu seperti pada gambar di bawah ini.

Correlation: Cramer V Analysis					
Variable List		Variable #1:			
^	>	м 🖬	•		
			w		
		Variable #2:			
	<	qt 🌆			
-			-		
OK Reset		Cancel Hel	0		
Authors: Ratna Jatnika & Mu	stofa Ha	iffas	Version 1 3 2 6		
a successive section of the section			101210		

Gambar 2.9 Tampilan Analisis Cramer V di Unpad SAS

• Klik **<OK>**. Setelah itu akan muncul output seperti gambar di bawah ini
Correlation Analysis

Cramer V, TSuprow T, & Pearson C

Data source: Cramer2

Gambar 2.10 Tampilan *output* Cramer V, Tsuprow T, dan Pearson C di Unpad SAS

B. UJI GAMMA

Analisis ini digunakan untuk mengetahui hubungan di antara dua variabel yang memiliki skala pengukuran paling sedikit ordinal dan berbentuk kategori.

Untuk melakukan pengujian dengan tepat, maka kita harus memenuhi beberapa asumsi. Pertama, pastikan distribusi data bersifat acak. Lalu jenis skala yang digunakan bersifat ordinal.

Contoh Masalah 2.3

Suatu penelitian dilakukan untuk mengetahui hubungan antara tingkat pendidikan dengan jabatan karyawan di suatu perusahaan. Pengambilan data terhadap 40 karyawan memberikan hasil sebagai berikut.

			 viasalali 2.5		
ID	Pendidikan	Jabatan	ID	Pendidikan	Jabatan
1	1	1	21	2	1
2	1	1	22	2	1

Tabel 2.12 Data Contoh Masalah 2.3

3	1	1	23	2	1
4	1	1	24	2	2
5	1	1	25	2	2
6	1	1	26	2	2
7	1	1	27	2	2
8	1	1	28	2	2
9	1	1	29	2	3
10	1	1	30	2	3
11	1	2	31	2	3
12	1	2	32	2	3
13	1	2	33	3	1
14	1	3	34	3	1
15	1	3	35	3	2
16	2	1	36	3	2
17	2	1	37	3	3
18	2	1	38	3	3
19	2	1	39	3	3
20	2	1	40	3	3

Keterangan:

Pendidikan: 1 = SLA; 2 = D3; 3 = S1

Jabatan: 1 = Karyawan Biasa; 2 = Supervisor; 3 = Manajer

Dengan taraf nyata 10%, 5%, 1%, ujilah apakah terdapat hubungan antara tingkat pendidikan dengan jabatan karyawan di perusahaan tersebut?

Pengerjaan Secara Manual

- 1. Rumusan Hipotesis
 - H_0 : Tidak terdapat hubungan yang signifikan antara tingkat pendidikan dengan jabatan karyawan
 - H_1 : Terdapat hubungan yang signifikan antara tingkat pendidikan dengan jabatan karyawan
- 2. Statistik Uji
 - Tetapkan:
 - V1 = Pendidikan
 - V2 = Jabatan
 - *α* = 10%, 5%, 1%
 - Susun data dalam bentuk Tabel Kontingensi dengan kategori berurut dari kecil ke besar

Tabel 2.13 Tabel Kontingensi Uji Gamma

Pokoriaan	Pendidikan					
rekeljaan	SLA	D3	S1			
Karyawan Biasa	10	8	2			
Supervisor	3	5	2			
Manajer	2	4	4			

• Hitung:

$$G = \frac{\#(+) - \#(-)}{\#(+) + \#(-)}$$
$$Z = (G - \gamma) \sqrt{\frac{\#(+) + \#(-)}{N(1 - G^2)}}$$

dimana:

#(+) adalah banyaknya pasangan yang agreement

#(-) atau banyaknya pasangan yang disagreement Untuk contoh masalah di atas:

$$#(+) = 10(5+2+4+4) + 8(2+4) + 3(4+4) + 5(4)$$

= 150 + 48 + 24 + 20 = 242
$$#(-) = 2(3+5+2+4) + 8(3+2) + 2(2+4) + 5(2)$$

$$# (-) = 2(3+5+2+4) + 8(3+2) + 2(2+4) + 5(2)$$
$$= 28 + 40 + 12 + 10 = 90$$

Maka,

$$G = \frac{\#(+) - \#(-)}{\#(+) + \#(-)} = \frac{242 - 90}{242 + 90} = \frac{152}{332} = 0.4578313253$$
$$Z = (G - \gamma)\sqrt{\frac{\#(+) + \#(-)}{N(1 - G^2)}}$$
$$Z = (0.4578313253 - 0)\sqrt{\frac{242 + 90}{40(1 - 0.4578313253^2)}}$$
$$Z = (0.4578313253)\sqrt{\frac{332}{31.615619104}}$$

Z = (0.4578313253)(3.2405460433) = 1.4836234897

Cari Z_{tabel} untuk α=0,10, 0,05, dan 0,01 dari tabel distribusi normal (lihat Lampiran 3).
 T = 1.6449 uii dua pihak

 $Z_{(0.10)} = 1,6448$ uji dua pihak

 $Z_{(0.05)} = 1,9600$ uji dua pihak $Z_{(0.01)} = 2,5760$ uji dua pihak $Z_{(0.10)} = 1,2816$ uji satu pihak $Z_{(0.05)} = 1,6448$ uji satu pihak $Z_{(0.01)} = 2,3263$ uji satu pihak

Karena hipotesis merupakan hipotesis dua pihak, maka kita menggunakan tabel distribusi normal untuk uji dua pihak.

3. Kriteria Uji

Tolak H_0 jika nilai $Z_{hitung} \ge Z_{tabel}$ atau $Z \le -Z_{tabel}$

Dengan nila
i $\alpha=10\%,5\%,maupun$ 1% untuk uji dua pihak, maka H_0
diterima.

4. Kesimpulan

Dapat disimpulkan bahwa "Tidak terdapat hubungan yang signifikan antara tingkat pendidikan dengan jabatan karyawan".

Pengerjaan dengan Unpad SAS

• Open tabel data menu File->Open

Gambar 2.11 Tampilan menu *File* di Unpad SAS

Buka file data dengan klik <ikon open file>, pada nama tabel yang ingin digunakan.

Gambar 2.12 Tampilan dialog *Open/Delete Table* di Unpad SAS

Pilih menu Analyze->Correlate->Gamma Analysis

l	JN	PAD	SA	S				
1	File	Edit	View	v Data		Analyze	Help	
ID:	1					Descriptive	Statistic	
	ID	Pendidik	can	Jabatan				These developments
	1		1	1	^	Correlate		I neta Analysis
	2		1	1		Nonparame	tric Tests	Eta Analysis
	3		1	1				
	4		1	1		Sampling		Jaspen's M Analysis
	5		1	1		Psychometr	ic Test	Cramer V Analysis
	7	_	1	1				
	8		1	1				Spearman Analysis
	9		1	1				Camma Analysis
	10		1	1				Gaillina Analysis
	11		1	2				
	12		1	2				
	13		1	2				
	14		1	3				
	15		1	3				
	16	_	2	1				
	17		2	1				
	18	_	2	1				
	19		2	1				
	20	_	2	1				
	21		2	1				
	22		2	1				
	24		2	2				
			-	-				

Gambar 2.13 Tampilan tabel yang telah diinput dan menu *Analyze*

Pilih variabel *Pendidikan* untuk *Variable #1* dan *Jabatan* untuk *Variable #2*, yaitu seperti pada gambar di bawah ini.

/oriable List			Variable #1	
			Valiable #1.	
		>	n Pendidikan	•
				-
			Variable #2:	
		<	📶 Jabatan	*
	-			-
ОК	Reset		Cancel	ielp

Gambar 2.14 Tampilan Analisis Uji Gamma di Unpad SAS

• Klik **<OK>**. Setelah itu akan muncul output seperti gambar di bawah ini.

Correlation Analysis

Gamma

Data source: Data_Gamma

Variables: Pendidikan, Jabatan

Contingency Table									
Dondidikan	Jabatan								
Pendidikan	[1]	[2]	[3]						
[1]	10	3	2						
[2]	8	5	4						
[3]	2	2	4						

Test Statistics								
G	0.4578							
Ζ	1.4836							
$Z_{0.10}$	2-tailed	1.6448						
Z _{0.05}	2-tailed	1.9600						
$Z_{0.01}$	2-tailed	2.5760						
Z _{0.10}	1-tailed	1.2816						
Z _{0.05}	1-tailed	1.6448						
Z _{0.01}	1-tailed	2.3263						

Gambar 2.15 Tampilan output Uji Gamma di Unpad SAS

Contoh Masalah 2.4

Ingin diketahui apakah terdapat hubungan antara status sosial ekonomi orangtua dengan tingkat pendidikan tertinggi yang dapat dicapai oleh anak pertama dari keluarga di desa Bojong Rangkong. Diperoleh data sebagai berikut:

Data Contoh Masalah 2.4						
STATUS SOSIAL	PENDIDIK	PENDIDIKAN TERTINGGI ANAK PERTAMA				
EKONOMI ORANGTUA	SD	SMP	SMA	PT	TOTAL	
Bawah	10	5	2	3	20	

Tabel 2.14

Menengah	8	9	7	1	25
Atas	2	6	8	9	25
TOTAL	20	20	17	13	70

Pengerjaan Secara Manual

- 1. Rumusan Hipotesis
 - H_0 : Tidak terdapat hubungan yang signifikan antara status sosial ekonomi orangtua dengan tingkat pendidikan tertinggi yang dapat dicapai oleh anak pertama
 - H₁: Terdapat hubungan yang signifikan antara status sosial ekonomi orangtua dengan tingkat pendidikan tertinggi yang dapat dicapai oleh anak pertama
- 2. Statistik Uji
 - Tetapkan:
 - V1 = Sosek (Status Sosial-ekonomi Orangtua)
 - V2 = Pendidikan
 - *α* = 10%, 5%, 1%
 - Susun data dalam bentuk Tabel Kontingensi dengan kategori berurut dari kecil ke besar

STATUS SOSIAL EKONOMI ORANGTUA	PENDIDIKAN TERTINGGI ANAK PERTAMA					
	SD	SMP	SMA	PT		
Bawah	10	5	2	3		
Menengah	8	9	7	1		
Atas	2	6	8	9		

Tabel 2.15 Tabel Kontingensi Uji Gamma

• Hitung:

$$G = \frac{\#(+) - \#(-)}{\#(+) + \#(-)}$$
$$Z = (G - \gamma) \sqrt{\frac{\#(+) + \#(-)}{N(1 - G^2)}}$$

dimana:

#(+) adalah banyaknya pasangan yang agreement

#(-) atau banyaknya pasangan yang disagreement

Untuk contoh masalah di atas:

$$\begin{aligned} \#(+) &= 10(9+7+1+6+8+9) + 5(7+1+8+9) + 2(1+9) + \\ &8(6+8+9) + 9(8+9) + 7(9) \\ &= 400 + 125 + 20 + 184 + 153 + 63 \\ &= 945 \\ \#(-) &= 3(8+9+7+2+6+8) + 2(8+9+2+6) + 5(8+2) + 1(2+6+8) \\ &+ 7(2+6) + 9(2) \\ &= 120 + 50 + 50 + 16 + 56 + 18 \\ &= 310 \end{aligned}$$

Maka,

$$G = \frac{\#(+) - \#(-)}{\#(+) + \#(-)} = \frac{945 - 310}{945 + 310} = \frac{635}{1255} = 0.5059760956$$
$$Z = (G - \gamma)\sqrt{\frac{\#(+) + \#(-)}{N(1 - G^2)}}$$
$$Z = (0.5059760956 - 0)\sqrt{\frac{945 + 310}{70(1 - 0.5059760956^2)}}$$
$$Z = (0.5059760956)\sqrt{\frac{1255}{52.079173349}}$$
$$Z = (0.5059760956)(4.9089637137) = 2.4838182933$$

- Cari Z_{tabel} untuk α =0,10, 0,05, dan 0,01 dari tabel distribusi normal (lihat Lampiran 3).
 - $Z_{(0.10)} = 1,6448$ uji dua pihak
 - $Z_{(0.05)} = 1,9600$ uji dua pihak
 - $Z_{(0.01)} = 2,5760$ uji dua pihak
 - *Z*_(0.10) = *1,2816 uji satu pihak*
 - $Z_{(0.05)} = 1,6448$ uji satu pihak
 - $Z_{(0.01)} = 2,3263$ uji satu pihak

Karena hipotesis merupakan hipotesis dua pihak, maka kita menggunakan tabel distribusi normal untuk uji dua pihak.

3. Kriteria Uji

Tolak H_0 jika nilai $Z_{hitung} \ge Z_{tabel}$ atau $Z \le -Z_{tabel}$

Dengan nilai $\alpha = 1\%$ untuk uji dua pihak, maka H_0 diterima. Sementara untuk $\alpha = 5\%$ dan 10%, maka H_0 ditolak.

4. Kesimpulan

Dapat disimpulkan secara umum bahwa "Terdapat hubungan yang signifikan antara status sosial ekonomi orangtua dengan tingkat pendidikan tertinggi yang dapat dicapai oleh anak pertama".

Pengerjaan dengan Unpad SAS

• Open tabel data menu File->Open

Gambar 2.16 Tampilan menu *File* di Unpad SAS

Buka file data dengan klik <ikon open file>, pada nama tabel yang ingin digunakan.

Gambar 2.17 Tampilan dialog *Open/Delete Table* di Unpad SAS

Pilih menu Analyze->Correlate->Gamma Analysis

l	ЛГ	IPAD	SAS						
	File	Edit	View	D	ata	Analyze	Help		
ID	1					Descriptive S	Statistic		
	ID	Sosek	Pendidika	in					
	1	1		1	^	Correlate		Theta Analysis	
	2	1		1		Nonparamet	ric Tests	Eta Analysis	
	3	1		1				·	
	4	1		1		Sampling		Jaspen's M Analysis	
	6	1		1		Psychometri	c Test	Cramer V Analysis	
	7	1		1					
	8	1		1				Spearman Analysis	
	9	1		1				Gamma Analysis	
	10	1		1				Gamma Analysis	
	11	1		2					
	12	1		2					
	13	1		2					
	14	1		2					
	15	1		2					
	16	1		3					
	17	1		3					
	18	1		4					
	19	1		4					
	20	1		4					
	21	2		1					
	22	2		1					

Gambar 2.18 Tampilan tabel yang telah diinput dan menu *Analyze*

• Pilih variabel *Sosek* untuk *Variable #1* dan *Pendidikan* untuk *Variable #2*, yaitu seperti pada gambar di bawah ini.

Correlation: Gamma Ana	alysis		×
Variable List	*	Variable #1:	*
	<	Variable #2:	•
OK F	Reset	Cancel	elp
Authors: Ratna Jatnika	& Mustofa Ha	affas	Version 1.3.2.6

Gambar 2.19 Tampilan Analisis Uji Gamma di Unpad SAS

• Klik **<OK>**. Setelah itu akan muncul output seperti gambar di bawah ini.

Correlation Analysis

Gamma

Data source: DataGamma

Variables: Sosek, Pendidikan

Contingency Table						
Cocolt	Pendidikan					
зозек	[1] [2] [3] [4					
[1]	10	5	2	3		
[2]	8	9	7	1		
[3]	2	6	8	9		

Test Statistics					
G		0.5060			
Ζ		2.4838			
$Z_{0.10}$	2-tailed	1.6448			
$Z_{0.05}$	2-tailed	1.9600			
$Z_{0.01}$	2-tailed	2.5760			
$Z_{0.10}$	1-tailed	1.2816			
$Z_{0.05}$	1-tailed	1.6448			
$Z_{0.01}$	1-tailed	2.3263			

Gambar 2.20 Tampilan output Uji Gamma di Unpad SAS

C. UJI SPEARMAN

Analisis ini digunakan untuk mengetahui hubungan di antara dua variabel yang memiliki skala pengukuran paling sedikit ordinal.

Untuk melakukan pengujian dengan tepat, maka kita harus memenuhi beberapa asumsi. Pertama, pastikan distribusi data bersifat acak. Lalu jenis skala yang digunakan bersifat ordinal.

Contoh Masalah 2.5

Suatu penelitian dilakukan untuk mengetahui hubungan antara motivasi kerja dengan hasil kerja dari 12 karyawan. Diperoleh data dimana motivasi kerja sebagai variabel ordinal dan hasil kerja sebagai variabel ordinal. Berikut hasil pengukuran yang diperoleh:

Data Contoh Masalah 2.5					
ID	Motivasi	Hasil			
1	23	78			

Tabel 2 16

2	25	78
3	26	80
4	30	85
5	32	85
6	25	78
7	21	80
8	20	70
9	34	82
10	32	80
11	33	85
12	19	75
KETERA	NGAN	
Mathead	- Mativaai Karia	Haail - Haail Kari

Motivasi = Motivasi Kerja, Hasil = Hasil Kerja

Dengan taraf nyata 10%, 5%, 1% ujilah apakah terdapat hubungan antara motivasi kerja dengan hasil kerja?

Pengerjaan Secara Manual

1. Rumusan Hipotesis

 H_0 : Tidak terdapat hubungan antara motivasi kerja dengan hasil kerja H_1 : Terdapat hubungan antara motivasi kerja dengan hasil kerja

- 2. Statistik Uji
 - Tetapkan:
 - V1 = Motivasi
 - V2 = Hasil
 - α = 10%, 5%, 1%
 - Buatlah tabel bantu untuk menyalin variabel-variabel yang akan diuji.

Tabel 2.17 Tabel Bantu

ID	V_1	V_2		
1				
Ν				

Untuk contoh masalah di atas:

Tabel 2.18 Tabel Bantu Contoh Masalah 2.5

ID	V_1	V_2
1	23	78
2	25	78
3	26	80

ID	V_1	V_2
4	30	85
5	32	85
6	25	78
7	21	80
8	20	70
9	34	82
10	32	80
11	33	85
12	19	75

• Perluas tabel bantu dengan menambahkan variabel R_1 dan R_2 . Lakukan perankingan terhadap V_1 dan nilainya tetapkan untuk variabel R_1 ; dan lakukan perankingan terhadap V_2 dan nilainya tetapkan untuk variabel R_2 .

Tabel 2.19 Tabel Bantu Perankingan Variabel

ID	V_1	V_2	R_1	R_2
1				
Ν	:	:	:	

• Perluas tabel bantu dengan menambahkan variabel d dan d^2 . Tetapkan $d = R_1 - R_2$, dan $d^2 = (R_1 - R_2)^2$.

$\frac{ D V_1 V_2 R_1 R_2 d d^2}{ D V_1 V_2 R_1 R_2 d d^2}$								
1					:			
	:	:	:	:	:			
Ν	:	:	:	:	:			
						Σd^2		

Tabel 2.20 Tabel Bantu dengan Variabel d dan d^2

• Untuk contoh masalah di atas:

Tabel 2.21 Tabel Bantu dengan Variabel d dan d^2

ID	V_1	V_2	R_1	R_2	d	d^2
1	23	78	4.00	4.00	0.00	0.00
2	25	78	5.50	4.00	1.50	2.25
3	26	80	7.00	7.00	0.00	0.00
4	30	85	8.00	11.00	-3.00	9.00
5	32	85	9.50	11.00	-1.50	2.25
6	25	78	5.50	4.00	1.50	2.25
7	21	80	3.00	7.00	-4.00	16.00
8	20	70	2.00	1.00	1.00	1.00
9	34	82	12.00	9.00	3.00	9.00
10	32	80	9.50	7.00	2.50	6.25

ID	V_1	V_2	R_1	R_2	d	d^2
11	33	85	11.00	11.00	0.00	0.00
12	19	75	1.00	2.00	-1.00	1.00
						49.00

Hitung

$$r_s = 1 - \frac{6\Sigma_{i=1}^N d_i^2}{N^3 - N}$$
$$z = r_s \sqrt{N - 1}$$

Untuk contoh masalah di atas:

. . .

$$r_s = 1 - \frac{294}{1716} = 1 - 0,1713 = 0,8287$$
$$z = r_s \sqrt{N - 1} = 0,8287\sqrt{11} = 2,7484$$

 Cari nilai Z_{tabel} dari tabel distribusi normal untuk taraf nyata 10%, 5%, dan 1% dari tabel distribusi normal (lihat Lampiran 3).

$$Z_{0,10} = 1,6448$$

 $Z_{0,05} = 1,9600$
 $Z_{0,01} = 2,5760$

3. Kriteria Uji

Tolak H_0 jika nilai $Z_{hitung} \ge Z_{tabel}$ atau $Z \le -Z_{tabel}$

4. Kesimpulan

Dapat disimpulkan bahwa secara umum terdapat hubungan antara motivasi kerja dengan hasil kerja.

Pengerjaan dengan Unpad SAS

• Open tabel data pada menu File->Open.

Gambar 2.21 Tampilan menu *File* di Unpad SAS

Buka file data dengan klik <ikon open file>, pada nama tabel yang ingin digunakan.

Gambar 2.22 Tampilan dialog *Open/Delete Table* di Unpad SAS

Pilih menu Analyze->Correlate->Spearman Analysis

1	File	Edit	View	Data	Analyze	Help	
ID:	1				Descriptive S	statistic	
	ID	Motivasi	Hasil				
	1	23	78		Correlate		Theta Analysis
	2	25	78		Nonnaramot	ria Tasta	Eta Apolycia
	3	26	80		Nonparametr		
	4	30	85		Sampling		Jaspen's M Analysis
	5	32	85				
	6	25	78		Psychometric	c Test	Cramer V Analysis
	7	21	80				Or a serie or Art sharin
	8	20	70				Spearman Analysis
	9	34	82				Gamma Analysis
	10	32	80				
	11	33	85				
	12	19	75				

Gambar 2.23 Tampilan tabel yang telah diinput dan menu *Analyze*

Pilih variabel *Motivasi* untuk Variabel 1 dan variabel *Hasil* untuk Variable
 2 seperti pada gambar di bawah ini.

Correlation: Spearman Analysis		×
Variable List	Variable #1:	A
	Variable #2:	v
· · ·		Ŧ
OK Reset	Cancel Help	
Authors: Ratna Jatnika & Mustofa H	laffas	Version 1.3.2.6

Gambar 2.24 Tampilan Analisis Uji Spearman di Unpad SAS

• Klik **<OK>**. Setelah itu akan muncul output seperti gambar di bawah ini.

Correlation Analysis

Spearman

Data source: DataSpearman

Variables: Motivasi, Hasil

	TABEL BANTU								
	Motivasi	Hasil	R1	R2	d	d ²			
1	23	78	4.00	4.00	0.00	0.00			
2	25	78	5.50	4.00	1.50	2.25			
3	26	80	7.00	7.00	0.00	0.00			
4	30	85	8.00	11.00	-3.00	9.00			
5	32	85	9.50	11.00	-1.50	2.25			
6	25	78	5.50	4.00	1.50	2.25			
7	21	80	3.00	7.00	-4.00	16.00			
8	20	70	2.00	1.00	1.00	1.00			
9	34	82	12.00	9.00	3.00	9.00			
10	32	80	9.50	7.00	2.50	6.25			
11	33	85	11.00	11.00	0.00	0.00			
12	19	75	1.00	2.00	-1.00	1.00			
	Total 49.00								

Test Statistics							
Rs		0.8287					
Z		2.7484					
Z _{0.10}	2-tailed	1.6448					
Z _{0.05}	2-tailed	1.9600					
$Z_{0.01}$	2-tailed	2.5760					
Z _{0.10}	1-tailed	1.2816					
Z _{0.05}	1-tailed	1.6448					
Z _{0.01}	1-tailed	2.3263					

Gambar 2.25 Tampilan *output* Uji Spearman di Unpad SAS

Contoh Masalah 2.6

Seorang pimpinan perusahaan tekstil ingin mengetahui apakah ada hubungan antara nilai ujian masuk perusahaan dengan jumlah barang yang dijual oleh 15 staff marketing yang baru direkrut pada tahun 2022. Diasumsikan nilai ujian masuk perusahaan merupakan variabel ordinal dan jumlah barang yang dijual merupakan variabel ordinal. Diperoleh data sebagai berikut:

ID	Nilai	Jumlah
1	81	7
2	89	12
3	85	15
4	84	8
5	84	11
6	92	11
7	82	11
8	83	9
9	84	13
10	88	10
11	86	12
12	90	12
13	87	14
14	91	8
15	91	13

Tabel 2.22 Data Contoh Masalah 3.2

KETERANGAN Nilai = Nilai Ujian Masuk Perusahaan, Jumlah = Jumlah Barang yang Dijual

Dengan taraf nyata 5%, ujilah apakah terdapat hubungan antara nilai ujian masuk perusahaan dengan jumlah barang yang dijual?

Pengerjaan Secara Manual

- 1. Rumusan Hipotesis
 - H_0 : Tidak terdapat hubungan antara nilai ujian masuk perusahaan dengan jumlah barang yang dijual
 - H_1 : Terdapat hubungan antara nilai ujian masuk perusahaan dengan jumlah barang yang dijual

2. Statistik Uji

- Tetapkan:
 - V1 = Nilai
 - V2 = Jumlah
 - α = 5%
- Buatlah tabel bantu untuk menyalin variabel-variabel yang akan diuji.

Tabel 2.23 Data Contoh Masalah 3.2 $ID V_1 V_2$

ID	V_1	V_2
1		
Ν		

Untuk contoh masalah di atas:

a Contoh Masala						
	ID	V_1	V_2			
	1	81	7			
	2	89	12			
	3	85	15			
	4	84	8			
	5	84	11			
	6	92	11			
	7	82	11			
	8	83	9			
	9	84	13			
	10	88	10			
	11	86	12			
	12	90	12			
	13	87	14			
	14	91	8			
	15	91	13			

Tabel 2.24 Data Contoh Masalah 3.2 $ID V_1 V_2$

• Perluas tabel bantu dengan menambahkan variabel R_1 dan R_2 . Lakukan perankingan terhadap V_1 dan nilainya tetapkan untuk variabel R_1 ; dan lakukan perankingan terhadap V_2 dan nilainya tetapkan untuk variabel R_2 .

	Tabel 2.25								
Da	Data Contoh Masalah 3.2								
	$ID \ V_1 \ V_2 \ R_1 \ R_2$								
	1		:	:	:				
	Ν								

• Perluas tabel bantu dengan menambahkan variabel *d* dan d^2 . Tetapkan $d = R_1 - R_2$, dan $d^2 = (R_1 - R_2)^2$.

Tabel 2.26 Data Contoh Masalah 3.2

ID	V_1	V_2	R_1	R_2	d	d^2
1	:	:	:			
Ν						
						Σd^2

• Untuk contoh masalah di atas:

Bata Bonton macalan 0.2						
ID	V_1	V_2	R_1	R_2	d	d^2
1	81	7	1.00	1.00	0.00	0.00
2	89	12	11.00	10.00	1.00	1.00
ა	85	15	7.00	15.00	-8.00	64.00
4	84	8	5.00	2.50	2.50	6.25
5	84	11	5.00	7.00	-2.00	4.00
6	92	11	15.00	7.00	8.00	64.00
7	82	11	2.00	7.00	-5.00	25.00
8	83	9	3.00	4.00	-1.00	1.00
9	84	13	5.00	12.50	-7.50	56.25
10	88	10	10.00	5.00	5.00	25.00
11	86	12	8.00	10.00	-2.00	4.00
12	90	12	12.00	10.00	2.00	4.00
13	87	14	9.00	14.00	-5.00	25.00
14	91	8	13.50	2.50	11.00	121.00
15	91	13	13.50	12.50	1.00	1.00
						401.50

Tabel 2.27 Data Contoh Masalah 3.2

Hitung

$$r_s = 1 - \frac{6\Sigma_{i=1}^N d_i^2}{N^3 - N}$$
$$z = r_s \sqrt{N - 1}$$

Untuk contoh masalah di atas:

$$r_s = 1 - \frac{2409}{3360} = 1 - 0,7170 = 0,2830$$
$$z = r_s \sqrt{N - 1} = 0,2830\sqrt{14} = 1,0590$$

- Cari nilai Z_{tabel} dari tabel distribusi normal untuk taraf nyata 5% dari tabel distribusi normal (lihat Lampiran 3). $Z_{0,05} = 1,9600$
- 3. Kriteria Uji

Tolak H_0 jika nilai $Z_{hitung} \ge Z_{tabel}$ atau $Z \le -Z_{tabel}$

4. Kesimpulan

Dapat disimpulkan bahwa tidak terdapat hubungan antara nilai ujian masuk perusahaan dengan jumlah barang yang dijual.

Pengerjaan dengan Unpad SAS

• Open tabel data pada menu File->Open.

Gambar 2.26 Tampilan menu *File* di Unpad SAS

Buka file data dengan klik <ikon open file>, pada nama tabel yang ingin digunakan.

Gambar 2.27 Tampilan dialog *Open/Delete Table* di Unpad SAS

Pilih menu Analyze->Correlate->Spearman Analysis

	File	Edit	View	Data	Analyze	Help	
ID: 1				Descriptive S	Statistic		
	ID	Nilai	Jumlah				
	1	81	7		Correlate		Theta Analysis
	2	89	12		Nennerenet	rie Teete	Eta Analusia
	3	85	15		Nonparametric Tests		
	4	84	8		Sampling		Jaspen's M Analysis
	5	84	11				
	6	92	11		Psychometri	c Test	Cramer V Analysis
	7	82	11				
	8	83	9				Spearman Analysis
	9	84	13				Gamma Analysis
	10	88	10				
	11	86	12				
	12	90	12				
	13	87	14				
	14	91	8				
	15	91	13				

Gambar 2.28 Tampilan tabel yang telah diinput dan menu *Analyze*

 Pilih variabel *Nilai* untuk Variabel 1 dan variabel *Jumlah* untuk Variable 2 seperti pada gambar di bawah ini.

Correlation: Spearman Analysis					
Variable List	Variable #1:	^			
 * 	Variable #2:	× •			
OK Reset	Cancel Help				
Authors: Ratna Jatnika & Mustofa Ha	iffas	Version 1.3.2.6			

Gambar 2.29 Tampilan Analisis Uji Spearman di Unpad SAS

• Klik **<OK>**. Setelah itu akan muncul output seperti gambar di bawah ini.

Correlation Analysis

Spearman

Data source: Data_Spearman

Variables: Nilai, Jumlah

TABEL BANTU								
	Nilai	Jumlah	R1	R2	d	d ²		
1	81	7	1.00	1.00	0.00	0.00		
2	89	12	11.00	10.00	1.00	1.00		
3	85	15	7.00	15.00	-8.00	64.00		
4	84	8	5.00	2.50	2.50	6.25		
5	84	11	5.00	7.00	-2.00	4.00		
6	92	11	15.00	7.00	8.00	64.00		
7	82	11	2.00	7.00	-5.00	25.00		
8	83	9	3.00	4.00	-1.00	1.00		
9	84	13	5.00	12.50	-7.50	56.25		
10	88	10	10.00	5.00	5.00	25.00		
11	86	12	8.00	10.00	-2.00	4.00		
12	90	12	12.00	10.00	2.00	4.00		
13	87	14	9.00	14.00	-5.00	25.00		
14	91	8	13.50	2.50	11.00	121.00		
15	91	13	13.50	12.50	1.00	1.00		
	401.50							

Test Statistics						
Rs		0.2830				
Z	1.0590					
Z _{0.10}	2-tailed	1.6448				
Z _{0.05}	2-tailed	1.9600				
Z _{0.01}	2-tailed	2.5760				
Z _{0.10}	1-tailed	1.2816				
Z _{0.05}	1-tailed	1.6448				
Z _{0.01}	1-tailed	2.3263				

Gambar 2.30 Tampilan *output* Uji Spearman di Unpad SAS

D. UJI THETA

Uji Theta digunakan untuk menghitung hubungan variabel dengan skala nominal dan variabel dengan skala ordinal.

Untuk melakukan pengujian dengan tepat, maka kita harus memenuhi beberapa asumsi. Pertama, pastikan bahwa data diperoleh dari sampel acak. Lalu jenis skala yang digunakan bersifat nominal dan ordinal.

Contoh Masalah 2.7

Sebuah penelitian dilakukan untuk mengetahui faktor-faktor yang berhubungan dengan jumlah kosakata Bahasa Inggris yang dipelajari oleh anak usia 8 tahun di Bandung. Berikut hasil penelitian tersebut:

	lenis	Tingkat	Status Sosial	Lama Belajar	Jumlah
ID	Kelamin	Pendidikan	Ekonomi	Bahasa Inggris	Kosakata Baru
	Relation	lbu	Orang Tua	(bulan)	Bahasa Inggris
1	1	1	1	1	20
2	2	1	1	2	25
3	1	1	2	3	30
4	1	1	3	4	54
5	1	1	3	5	21
6	2	2	1	6	25
7	2	2	1	4	23
8	1	2	1	3	45
9	2	2	2	5	32
10	1	2	2	7	43
11	1	2	2	6	12
12	1	2	3	4	43
13	2	2	3	3	21
14	2	2	3	8	45
15	2	2	3	9	32
16	2	3	1	7	12
17	2	3	1	6	10
18	1	3	1	3	20
19	2	3	1	4	31
20	1	3	2	5	23
21	2	3	2	6	43
22	1	3	2	7	21
23	2	3	2	8	43
24	1	3	2	3	23
25	2	3	3	1	87
26	1	3	3	2	32
27	2	3	3	5	12
28	1	3	3	4	34
29	2	3	3	3	32
30	2	3	3	3	30

Tabel 2.28 Data Contoh Masalah 4.1

Keterangan:

Jenis Kelamin: 1 = Laki-laki; 2 = Perempuan Pendidikan Ibu: 1 = SLA; 2 = D3; 3 = S1 Status Sosial Ekonomi: 1 = Rendah; 2 = Sedang; 3 = Tinggi

Berdasarkan data tersebut, hitunglah besarnya hubungan antara jenis kelamin anak dengan tingkat pendidikan ibu!

Pengerjaan Secara Manual

Untuk melakukan pengujian dengan tepat, maka kita harus memenuhi beberapa asumsi. Pertama, pastikan distribusi data bersifat acak. Lalu jenis skala yang digunakan bersifat nominal atau ordinal. Selain itu, variabel interval diasumsikan memiliki distribusi normal.

Berikut ini adalah langkah pengerjaan soal di atas:

- 1. Tentukan hipotesis. Rumuskan H_0 dan H_1 seperti dibawah ini.
 - H_0 : Tidak terdapat hubungan yang signifikan antara jenis kelamin dengan tingkat pendidikan ibu
 - H_1 : Terdapat hubungan yang signifikan antara jenis kelamin dengan jumlah tingkat pendidikan ibu
- 2. Hitung dengan rumus korelasi Theta.
 - Selanjutnya adalah penghitungan rumus korelasi Theta dengan menggunakan rumus di bawah ini.

$$\theta = \frac{\Sigma D_i}{T_2}$$

dengan

$$\Sigma D_i = |fa - fb|$$

Tabel 2.29 Tabel Bantu Contoh Masalah 4.1

Jenis Kelamin	Tingkat Pendidikan Ibu			Jumlah
	1	2	3	
1	4	4	6	14
2	1	6	9	16
Jumlah	5	10	15	30

= 50

$$F_{a} = 4(0) + 4(1) + 6(1 + 6)$$

$$F_{a} = 4 + 42$$

$$F_{a} = 46$$

$$F_{b} = 4(6 + 9) + 4(9) + 6(0)$$

$$F_{b} = 60 + 36$$

$$F_{b} = 96$$

$$\Sigma D_{i} = |fa - fb| = |46 - 96|$$

$$\theta = \frac{\Sigma D_{i}}{T_{2}}$$

$$\theta = \frac{50}{14 * 16}$$
$$\theta = \frac{50}{224}$$
$$\theta = 0,2232$$

3. Pada korelasi theta, tidak terdapat uji signifikansinya sehingga hasil perhitungan korelasi theta langsung dibandingkan dengan kriteria Guilford.

Bandingkan nilai Theta dengan kriteria Guilford.

4. Kesimpulan

Berdasarkan Analisis Statistik Korelasi Theta, didapatkan bahwa r = 0,2232. Hal ini menandakan bahwa terdapat hubungan yang rendah antara jenis kelamin anak dengan tingkat pendidikan ibu.

Pengerjaan dengan Unpad SAS

• Open tabel data menu File->Open

Gambar 2.31 Tampilan menu *File* di Unpad SAS

Buka file data dengan klik <ikon open file>, pada nama tabel yang ingin digunakan.

Gambar 2.32 Tampilan dialog *Open/Delete* Table di Unpad SAS

Pilih menu Analyze->Correlate->Theta Analysis

l	UNPAD SAS									
	File	E	Edit View	Data	a	Analyze	Help			
ID:	1					Descriptive	e Statistic			
	ID	JK	Pendidikan	SES	LB					
	1	1	1	1	1	Correlate			Theta Analysis	
	2	2	1	1	2	Mannaram	etrie Teste		Eta Analysia	
	3	1	1	2	3	Nonparam	ienic resis		Eta Analysis	
	4	1	1	3	4	Sampling			Jaspen's M Analysis	
	5	1	1	3	5					
	6	2	2	1	6	Psychome	tric Test		Cramer V Analysis	
	7	2	2	1	4	23				
	8	1	2	1	3	45			Spearman Analysis	
	9	2	2	2	5	32			Gamma Analysis	
	10	1	2	2	7	43				
	11	1	2	2	6	12				
	12	1	2	3	4	43				
	13	2	2	3	3	21				
	14	2	2	3	8	45				
	15	2	2	3	9	32				
	16	2	3	1	7	12				
	17	2	3	1	6	10				
	18	1	3	1	3	20				
	19	2	3	1	4	31				
	20	1	3	2	5	23				
	21	2	3	2	6	43				
	22	1	3	2	7	21				

Gambar 2.33 Tampilan tabel yang telah diinput dan menu Analyze

 Pilih variabel Jenis Kelamin (JK) untuk Variable 1 (Nominal) dan Tingkat Pendidikan Ibu (Pendidikan) untuk Variable 2 (Ordinal), yaitu seperti pada gambar di bawah ini.

Correlation: Theta Analysis						
Variable List	Variable #1 (Nominal):					
	Variable #2 (Ordinal):	•				
OK Reset	Cancel Help					
Authors: Ratna Jatnika & Mustofa Ha	iffas	Version 1.3.2.6				

Gambar 2.34 Tampilan Analisis Theta di Unpad SAS

• Klik **<OK>**. Setelah itu akan muncul output seperti gambar di bawah ini

Correlation Analysis

Theta

Data source: DataTheta

Variables: JK, Pendidikan

Contingency Table							
Dondidikon	JI						
Penuluikan	[1]	[2]	Totai				
[1]	4	1	5				
[2]	4	6	10				
[3]	6	9	15				
Total	14	16	30				

Test Statistics								
ЈК	N	F1	F2	T2	EDi	Theta		
[1]	14	16	46 06	224	50	0 2222		
[2]	16	40	90	224	50	0.2232		

Gambar 2.35 Tampilan *output* Theta Analysis di Unpad SAS

Contoh Masalah 2.8

Data yang digunakan sama dengan Contoh Masalah 2 pada Analisis Eta. Sebuah penelitian dilakukan untuk mengetahui faktor-faktor yang berhubungan dengan jumlah pendapatan pertahun masyarakat dengan rentang usia dewasa awal di Kecamatan Jatinegara. Berikut hasil penelitian yang dilakukan kepada 40 orang partisipan:

Tabel 2.30

Data Contoh Masalah 4.2								
ID	Jenis Kelamin	Status Pekerjaan	Tingkat Pendidikan Terakhir	Jumlah Pendapatan Pertahun				
1	1	2	2	95				
2	1	1	3	50				
3	1	1	1	80				
4	2	2	4	34				
5	1	2	3	30				
6	1	2	2	20				
7	2	1	4	52				
8	2	1	2	40				
9	2	2	3	58				
10	1	2	2	18				
11	2	1	2	35				
12	1	2	1	55				
13	1	1	4	24				
14	2	2	4	50				

ID	Jenis Kelamin	Status Pekerjaan	Tingkat Pendidikan Terakhir	Jumlah Pendapatan Pertahun
15	2	2	4	30
16	1	2	2	40
17	2	1	3	80
18	1	2	1	20
19	1	1	2	49
20	1	1	2	58
21	1	1	4	45
22	2	2	3	55
23	2	2	1	28
24	1	2	4	85
25	2	1	4	50
26	2	2	3	45
27	2	1	3	25
28	1	2	2	95
29	2	2	4	52
30	2	2	4	30
31	2	1	3	55
32	1	2	3	52
33	1	1	2	60
34	2	2	4	32
35	1	1	1	65
36	1	2	4	49
37	1	1	3	75
38	2	1	3	37
39	2	1	4	80
40	2	2	2	75

Keterangan:

Jenis Kelamin: 1 = Laki-laki; 2 = Perempuan

Status Pekerjaan: 1 = Pekerjaan Tetap; 2 = Pekerjaan Tidak Tetap Tingkat Pendidikan Terakhir: 1 = SD; 2 = SMP; 3 = SMA; 4 = Perguruan Tinggi Jumlah Pendapatan Pertahun (dalam satuan juta)

Hitunglah besarnya hubungan antara Status Pekerjaan dengan Tingkat Pendidikan Terakhir!

Pengerjaan Secara Manual

Untuk melakukan pengujian dengan tepat, maka kita harus memenuhi beberapa asumsi. Pertama, pastikan distribusi data bersifat acak. Lalu jenis skala yang digunakan bersifat nominal dan ordinal. Berikut ini adalah langkah pengerjaan soal di atas:

1. Tentukan hipotesis. Rumuskan H_0 dan H_1 seperti dibawah ini.

- H_0 : Tidak terdapat hubungan yang signifikan antara status pekerjaan dengan tingkat pendidikan terakhir
- H_1 : Terdapat hubungan yang signifikan antara status pekerjaan dengan tingkat pendidikan terakhir
- 2. Hitung dengan rumus korelasi Theta.
 - Selanjutnya adalah penghitungan rumus korelasi Theta dengan menggunakan rumus di bawah ini.

$$\theta = \frac{\Sigma D_i}{T_2}$$

dengan

$$\Sigma D_i = |fa - fb|$$

Tabel 2.31						
Tabel bantu contoh masalah 4.2						

Status	Tingka	lumloh			
Pekerjaan	1	2	3	4	Juman
1	2	5	6	5	18
2	3	6	5	8	22
Jumlah	5	11	11	13	30

$$F_a = 2(0) + 5(3) + 6(3 + 6) + 5(3 + 6 + 5)$$

$$F_a = 15 + 54 + 70$$

$$F_a = 139$$

$$F_b = 2(6 + 5 + 8) + 5(5 + 8) + 6(8) + 5(0)$$

$$F_b = 38 + 65 + 48$$

$$F_b = 151$$

$$\Sigma D_i = |fa - fb| = |139 - 151| = 12$$

$$\theta = \frac{\Sigma D_i}{T_2}$$
$$\theta = \frac{12}{18 * 22}$$
$$\theta = \frac{12}{396}$$
$$\theta = 0.0303$$

3. Pada korelasi theta, tidak terdapat uji signifikansinya sehingga hasil perhitungan korelasi theta langsung dibandingkan dengan kriteria Guilford.

Bandingkan nilai Theta dengan kriteria Guilford.

4. Kesimpulan

Berdasarkan Analisis Statistik Korelasi Theta, didapatkan bahwa r = 0,0303. Hal ini menandakan bahwa tidak terdapat hubungan antara status pekerjaan dengan tingkat pendidikan terakhir.

Pengerjaan dengan Unpad SAS

• Open tabel data menu File->Open

Gambar 2.36 Tampilan menu *File* di Unpad SAS

Buka file data dengan klik <ikon open file>, pada nama tabel yang ingin digunakan.

Gambar 2.37 Tampilan dialog *Open/Delete* Table di Unpad SAS

Pilih menu Analyze->Correlate->Theta Analysis

ι	UNPAD SAS								
f	File	٧	liew	Data	Analyze	Help			
ID: 1					Descriptive	Statistic			
	ID	JK	Sta	t_Pekerja				Developmenter	
	1	1			Correlate		Theta Ana	alysis	
	2	1			Nonparamet	tric Tests	Eta Analy	sis	
	3	1							
	4	2	_		Sampling		Jaspen's	M Analysis	
	5	1			Psychometri	ic Test	Cramer V	TSuprow and	
	7	2			1		Pearson /	Analysis	
	8	2	_		1				
	9	2			2		Spearman	Spearman Analysis	
	10	1			2	2 Gamma		nalysis	
	11	2			1				
	12	1			2		Pearson /	Analysis	
	13	1			1		4	3	
	14	2			2		4	4	
	15	2			2		4	3	
	16	1	_	_	2		2	3	
	17	2			1		3	6	
	18	1	_		2		1	2	
	19	1			1		2	4	
	21	1			1		4	3	
	22	2			2		3	5	

Gambar 2.38 Tampilan tabel yang telah diinput dan menu Analyze

 Pilih variabel Status Pekerjaan (Stat_Pekerjaan) untuk Variable 1 (Nominal) dan Tingkat Pendidikan Terakhir (Ting_Pend_Terakhir) untuk Variable 2 (Ordinal), yaitu seperti pada gambar di bawah ini.

Correlation: Theta Analysis		×
Variable List	Variable #1 (Nominal):	
di JK ♪ Jml_Pendapatan >	📶 Stat_Pekerjaan	*
		-
	Variable #2 (Ordinal):	
	📶 Ting_Pend_Terakhir	A
·		•
OK Reset	Cancel Help	
Authors: Ratpa latnika & Mustofa Ha	iffas	Version 1 3 2 6

Gambar 2.39 Tampilan Analisis Theta di Unpad SAS

• Klik **<OK>**. Setelah itu akan muncul output seperti gambar di bawah ini

Correlation Analysis

Theta

Data source: DataTetha2

Variables: Stat_Pekerjaan, Ting_Pend_Terakhir

			Conting	gency Tab	le			
	т:	ing Dond Topolthin		Stat_Pel	kerjaan	Total		
Ting_Pena_		_тегакшт	[1]	[2]	Iotai			
	[1]			2	3	5		
	[2]			5	6	11		
	[3]			6	5	11		
	[4]			5	8	13		
		Tot	al	18	22	40		
			lest	Statistics		-		
Stat_Pekerjaa	an	N	F1	F2	T2	ED	i	Theta
[1]		18	120	151	20	6	12	0.0202
[2]		22	139	151	39	0	12	0.0505

E. UJI ETA

Uji Eta digunakan untuk menghitung hubungan variabel dengan skala nominal dan variabel dengan skala interval.

Untuk melakukan pengujian dengan tepat, maka kita harus memenuhi beberapa asumsi. Pertama, pastikan bahwa data berasal dari sampel acak. Lalu jenis skala yang digunakan bersifat nominal dan interval.

Contoh Masalah 2.9

Sebuah penelitian dilakukan untuk mengetahui besarnya hubungan antara faktor-faktor yang berpengaruh terhadap jumlah kosakata Bahasa Inggris yang dipelajari oleh anak usia 8 tahun di Bandung. Berikut hasil penelitian tersebut:

-						
	ID	Jenis	Tingkat	Status Sosial	Lama Belajar	Jumlah
		Kelamin	Pendidikan	Ekonomi	Bahasa Inggris	Kosakata Baru
			lbu	Orang Tua	(bulan)	Bahasa Inggris
	1	1	1	1	1	20
	2	2	1	1	2	25
	3	1	1	2	3	30
ſ	4	1	1	3	4	54
	5	1	1	3	5	21

Tabel 2.32				
Data Contoh Masalah 5.2				

ID	Jenis	Tingkat	Status Sosial	Lama Belajar	Jumlah	
	Kelamin	Pendidikan	Ekonomi	Bahasa Inggris	Kosakata Baru	
		lbu	Orang Tua	(bulan)	Bahasa Inggris	
6	2	2	1	6	25	
7	2	2	1	4	23	
8	1	2	1	3	45	
9	2	2	2	5	32	
10	1	2	2	7	43	
11	1	2	2	6	12	
12	1	2	3	4	43	
13	2	2	3	3	21	
14	2	2	3	8	45	
15	2	2	3	9	32	
16	2	3	1	7	12	
17	2	3	1	6	10	
18	1	3	1	3	20	
19	2	3	1	4	31	
20	1	3	2	5	23	
21	2	3	2	6	43	
22	1	3	2	7	21	
23	2	3	2	8	43	
24	1	3	2	3	23	
25	2	3	3	1	87	
26	1	3	3	2	32	
27	2	3	3	5	12	
28	1	3	3	4	34	
29	2	3	3	3	32	
30	2	3	3	3	30	

Keterangan:

Jenis Kelamin: 1 = Laki-laki; 2 = Perempuan Pendidikan Ibu: 1 = SLA; 2 = D3; 3 = S1 Status Sosial Ekonomi: 1 = Rendah; 2 = Sedang; 3 = Tinggi

Dengan taraf kepercayaan 95%, jawablah persoalan berikut ini, hitunglah besarnya hubungan antara jenis kelamin anak dengan jumlah kosakata baru!

Pengerjaan Secara Manual

- 1. Tentukan hipotesis. Rumuskan H_0 dan H_1 seperti dibawah ini.
 - ${\cal H}_0$: Tidak terdapat hubungan yang signifikan antara jenis kelamin dengan jumlah kosakata baru
 - H_1 : Terdapat hubungan yang signifikan antara jenis kelamin dengan jumlah kosakata baru
- 2. Hitung dengan rumus korelasi Eta.
Selanjutnya adalah penghitungan rumus korelasi Eta dengan menggunakan rumus di bawah ini.

$$\eta = \sqrt{1 - \frac{\Sigma Y_T^2 - (N_1)(\bar{Y}_1)^2 - \dots - (N_k)(\bar{Y}_k)^2}{\Sigma Y_T^2 - (N_1 + \dots + N_k)(\bar{Y}_T)^2}}$$

Keterangan:

 N_1 , ..., N_k = Ukuran sampel \overline{Y}_T = Total dari rata-rata kelompok 1 sampai k yang digabungkan \overline{Y}_1 , ..., \overline{Y}_k = Rata-rata kelompok 1 sampai kelompok k $\Sigma \overline{Y}_T^2$ = Jumlah kuadrat dari setiap skor dari tiap sampel

• Untuk soal dengan 2 kelompok, akan digunakan rumus sebagai berikut.

$$\eta = \sqrt{1 - \frac{\Sigma Y_T^2 - (N_1)(\bar{Y}_1)^2 - (N_2)(\bar{Y}_2)^2}{\Sigma Y_T^2 - (N_1 + N_2)(\bar{Y}_T)^2}}$$

Untuk mempermudah pengerjaan ini, buatlah tabel bantu sebagai berikut

Laki-Laki	Y_1	Perempuan	Y_2				
20	400	25	625				
30	900	25	625				
54	2.916	23	529				
21	441	32	1024				
45	2.025	21	441				
43	1.849	45	2.025				
12	144	32	1.024				
43	1.849	12	144				
20	400	10	100				
23	529	31	961				
21	441	43	1.849				
23	529	43	1.849				
32	1.025	87	7.569				
34	1.156	12	144				
		32	1.024				
		30	900				
421	14603	503	20833				

Tabel 2.33 Tabel bantu contoh masalah 5.1

Setelah membuat tabel di atas, kemudian hitunglah menggunakan rumus korelasi Eta (2 *sample*)

$$\begin{split} \eta &= \sqrt{1 - \frac{\Sigma Y_T{}^2 - (N_1)(\bar{Y}_1)^2 - (N_2)(\bar{Y}_2)^2}{\Sigma Y_T{}^2 - (N_1 + N_2)(\bar{Y}_T)^2}} \\ \eta &= \sqrt{1 - \frac{35436 - (14)(30)^2 - (16)(31,4)^2}{35436 - (14 + 16)(30,8)^2}} \\ \eta &= \sqrt{1 - \frac{35436 - 12658,86 - 15815,57}{35436 - 28459,2}} \\ \eta &= \sqrt{1 - \frac{6961,57}{6976,8}} \\ \eta &= \sqrt{1 - 0.9978} \\ \eta &= 0.0448 \end{split}$$

3. Hitung Uji Signifikansi.

Setelah mendapatkan nilai korelasi eta, hitung signifikansi dengan rumus F di berikut ini.

$$F = \frac{\eta^2 (N - k)}{(1 - \eta^2)(k - 1)}$$

$$F = \frac{(0,0448)^2 (30 - 2)}{(1 - (0,0448)^2)(2 - 1)}$$

$$F = \frac{0,002 (28)}{0,998 (1)}$$

$$F = \frac{0,056}{0,998}$$

$$F = 0,056$$

4. Kriteria Uji (Daerah Kritis)

Carilah nilai F_{tabel} (lihat lampiran 2) dengan df pembilang (K-1) dan df penyebut (N-k). Jika $F_{hitung} \ge F_{tabel}$ maka H_0 ditolak. Nilai F_{hitung} lebih kecil daripada F_{tabel} maka H_0 diterima.

5. Hasil

Dengan df pembilang (2 - 1 = 1) dan df penyebut (30 - 2 = 28), maka didapatkan $F_{tabel} = 4,\!1960$

6. Kesimpulan

Kesimpulannya adalah H_0 diterima, artinya tidak terdapat hubungan yang signifikan antara jenis kelamin dengan jumlah kosakata baru.

Pengerjaan dengan Unpad SAS

• Open tabel data menu File->Open

Gambar 2.41 Tampilan menu *File* di Unpad SAS

Buka file data dengan klik <ikon open file>, pada nama tabel yang ingin digunakan.

Gambar 2.42 Tampilan dialog *Open/Delete* Table di Unpad SAS

Pilih menu Analyze->Correlate->Eta Analysis

l	JN	P/	٩D	SAS				
	File	١	/iew	Data	Ana	alyze	Help	
ID:	1				Desc	riptive	Statistic	
	ID	JΚ	Pen	didikan				
	1	1		1	Corre	elate		Theta Analysis
	2	2		1	Nonr	aram	etric Tests	Eta Analysis
	3	1		1	140rip	anann	0110 10010	
	4	1		1	Sampling			Jaspen's M Analysis
	5	1		1				
	6	2		2	Psychometric Test		ric Test	Cramer V, TSuprow, and
	7	2		2	1	4	23	Fearson Analysis
	8	1		2	1	3	45	Spearman Analysis
	9	2		2	2	5	32	
	10	1		2	2	7	43	Gamma Analysis
	11	1		2	2	6	12	Provide the factor
	12	1		2	3	4	43	Pearson Analysis
	13	2		2	3	3	21	
	14	2		2	3	8	45	
	15	2		2	3	9	32	
	16	2		3	1	7	12	

Gambar 2.43 Tampilan tabel yang telah diinput dan menu Analyze

Pilih variabel Jenis Kelamin (JK) untuk Variable 1 dan Jmlh. Kosakata Baru
 B. Inggris (JKBB) untuk Variable 2, yaitu seperti pada gambar di bawah ini.

Correlation: Eta Analysis		×
Variable List dl Pendidikan dl SES dl LB	Variable #1 (Nominal): til	
>	Variable #2 (Interval):	
OK Reset	Cancel Help	
Authors: Ratna Jatnika & Mustofa Haf	ffas	Version 1.3.2.6

Gambar 2.44 Tampilan Analisis Eta di Unpad SAS

• Klik **<OK>**. Setelah itu akan muncul output seperti gambar di bawah ini

Correlation Analysis

Eta

Data source: DataEta

Variables: JK, JKBB

Test Statistics						
IV	N	JKBB				
JK	N	Value	Value ²	Mean		
[1]	14	421	14,603	30.0714		
[2]	16	503	20,833	31.4375		
Total	30	924	35,436			

Eta	0.0447
F	0.0560
F(0.01)	7.6360
F _(0.05)	4.1960

Gambar 2.45 Tampilan *output* Eta Analysis di Unpad SAS

Contoh Masalah 2.10

Sebuah penelitian dilakukan untuk mengetahui hubungan antara jenis perusahaan pabrik dengan rata-rata suhu yang digunakan untuk mengolah suatu produk makanan di daerah Bandung. Berikut hasil penelitian yang dilakukan:

	l abel 2.34 Data contoh masalah 5.2						
ID	Pabrik	Urutan Kualitas Produk	Suhu Pengolahan Produk				
1	2	4	95				
2	2	3	52				
3	2	1	30				
4	2	3	55				
5	2	3	52				
6	2	3	60				
7	2	2	32				
8	1	2	40				
9	1	3	58				
10	1	1	18				
11	2	4	75				
12	2	3	52				
13	2	4	100				

п	Pahrik	Urutan Kualitas	Suhu Pengolahan
	T abrik	Produk	Produk
14	2	3	60
15	2	4	85
16	2	1	28
17	2	4	90
18	1	1	20
19	1	3	49
20	1	3	58
21	1	3	45
22	2	3	55
23	2	2	28
24	2	4	85
25	2	3	50
26	2	3	45
27	2	1	25
28	1	4	95
29	1	3	50
30	1	4	80
31	1	2	34
32	1	2	30
33	1	1	20
34	1	3	52
35	2	3	65
36	2	3	49
37	2	4	75
38	2	2	37
39	2	4	80
40	1	3	55
41	1	1	24
42	1	3	50
43	1	1	30
44	1	2	40
45	1	4	80
46	1	1	20
47	2	4	85
48	2	3	48
49	2	2	30
50	2	2	38

Keterangan:

Jenis Perusahaan Pabrik: 1 = Pabrik A; 2 = Pabrik B Urutan Kualitas Produk: 1 = Kurang Baik; 2 = Biasa; 3 = Baik; 4 = Sangat Baik

Dengan taraf kepercayaan 95%, jawablah persoalan berikut ini: Hitunglah besarnya hubungan antara Jenis Perusahaan Pabrik dengan Suhu Pengolahan Produk!

Pengerjaan Secara Manual

- 1. Tentukan hipotesis. Rumuskan H_0 dan H_1 seperti dibawah ini.
 - H_0 : Tidak terdapat hubungan yang signifikan antara jenis perusahaan pabrik dengan suhu pengolahan produk
 - H_1 : Terdapat hubungan yang signifikan antara jenis perusahaan pabrik dengan suhu pengolahan produk
- 2. Hitung dengan rumus korelasi Eta.
 - Selanjutnya adalah penghitungan rumus korelasi Eta dengan menggunakan rumus di bawah ini.

$$\eta = \sqrt{1 - \frac{\Sigma Y_T^2 - (N_1)(\bar{Y}_1)^2 - \dots - (N_k)(\overline{Y}_k)^2}{\Sigma Y_T^2 - (N_1 + \dots + N_k)(\bar{Y}_T)^2}}$$

Keterangan:

 N_1 , ... , N_k = Ukuran sampel

 $ar{Y}_T\,$ = Total dari rata-rata kelompok 1 sampai k $\,$ yang digabungkan

 \overline{Y}_1 , ... , \overline{Y}_k = Rata-rata kelompok 1 sampai kelompok k

 $\Sigma \overline{Y}_T^{\ \ 2} =$ Jumlah kuadrat dari setiap skor dari tiap sampel

Untuk soal dengan 2 kelompok, akan digunakan rumus sebagai berikut.

$$\eta = \sqrt{1 - \frac{\Sigma Y_T^2 - (N_1)(\bar{Y}_1)^2 - (N_2)(\bar{Y}_2)^2}{\Sigma Y_T^2 - (N_1 + N_2)(\bar{Y}_T)^2}}$$

Untuk mempermudah pengerjaan ini, buatlah tabel bantu sebagai berikut

Tabel 2.35

Tabel bantu contoh masalah 5.2						
Pabrik A	\overline{Y}_1	Pabrik B	\overline{Y}_2			
40	1600	95	9025			
58	3364	52	2704			
18	324	30	900			
20	400	55	3025			
49	2401	52	2704			
58	3364	60	3600			
45	2025	32	1024			
95	9025	75	5625			
50	2500	52	2704			
80	6400	100	10000			
34	1156	60	3600			
30	900	85	7225			

20	400	28	784
52	2704	90	8100
55	3025	55	3025
24	576	28	784
50	2500	85	7225
30	900	50	2500
40	1600	45	2025
80	6400	25	625
20	400	65	4225
		49	2401
		75	5625
		37	1369
		80	6400
		85	7225
		48	2304
		30	900
		38	1444
Jumlah = 948	Jumlah = 51964	Jumlah = 1661	Jumlah = 109097

Setelah membuat tabel di atas, kemudian hitunglah menggunakan rumus korelasi Eta

$$\begin{split} \eta &= \sqrt{1 - \frac{\Sigma Y_T^2 - (N_1)(\bar{Y}_1)^2 - (N_2)(\bar{Y}_2)^2}{\Sigma Y_T^2 - (N_1 + N_2)(\bar{Y}_T)^2}} \\ \eta &= \sqrt{1 - \frac{161061 - (21)(45,14)^2 - (29)(57,27)^2}{161061 - (21+29)(52,18)^2}} \\ \eta &= \sqrt{1 - \frac{161061 - 42790,01 - 95115,73}{161061 - 136137,62}} \\ \eta &= \sqrt{1 - \frac{23155,26}{24923,38}} \\ \eta &= \sqrt{1 - 0.929} \\ \eta &= 0.2664 \end{split}$$

3. Hitung Uji Signifikansi.

Setelah mendapatkan nilai korelasi eta, hitung signifikansi dengan rumus F di berikut ini.

$$F = \frac{\eta^2 (N - k)}{(1 - \eta^2)(k - 1)}$$

$$F = \frac{(0,2664)^2 (50 - 2)}{(1 - (0,2664)^2)(2 - 1)}$$
$$F = \frac{0,0709 (48)}{0,9290 (1)}$$
$$F = \frac{3,406}{0,9290}$$
$$F = 3,67$$

4. Kriteria Uji (Daerah Kritis)

Carilah nilai F_{tabel} (lihat lampiran 2) dengan df pembilang (K-1) dan df penyebut (N-k). Jika $F_{hitung} \ge F_{tabel}$ maka H_0 ditolak. Nilai F_{hitung} lebih kecil daripada F_{tabel} maka H_0 diterima.

5. Hasil

Dengan df pembilang (2 - 1 = 1) dan df penyebut (50 - 2 = 58), maka didapatkan F_{tabel} = 4,0850

6. Kesimpulan

Kesimpulannya adalah H_0 diterima, artinya tidak terdapat hubungan yang signifikan antara jenis perusahaan pabrik dengan suhu pengolahan produk.

Pengerjaan dengan Unpad SAS

• Open tabel data menu File->Open

Gambar 2.46 Tampilan menu *File* di Unpad SAS

Buka file data dengan klik <ikon open file>, pada nama tabel yang ingin digunakan.

Gambar 2.47 Tampilan dialog *Open/Delete* Table di Unpad SAS

Pilih menu Analyze->Correlate->Eta Analysis

l	JN	PAD	SAS				
	File	View	Data	Analyze	Help		
ID:	1			Descriptive S	statistic		
	ID	Uruta	n_Kualitas	Operation		Thete Analysis	
	1			Correlate		Theta Analysis	
	2			Nonparametric Tests		Eta Analysis	
	3						
	4			Sampling		Jaspen's M Analysis	
	6			Psychometric Test		Cramer V. TSuprow, and	
	7					Pearson Analysis	
	8			2		Coormon Analysia	
	9			3		Spearman Analysis	
	10			1		Gamma Analysis	
	11			4			
	12			3		Pearson Analysis	
	13			4		100 2	
	14			3	60 2		
	15			4		85 2	

Gambar 2.48 Tampilan tabel yang telah diinput dan menu Analyze

• Pilih variabel Pabrik untuk *Variable 1* dan Suhu Pengolahan Produk untuk *Variable 2*, yaitu seperti pada gambar di bawah ini.

Correlation: Eta Analysis			×
Variable List di Urutan_Kualitas_Produk	>	Variable #1 (Nominal): dil Pabrik	
	>	Variable #2 (Interval):	luk
OK Reset		Cancel Help	
Authors: Ratna Jatnika & Muste	ofa Ha	iffas	Version 1.3.2.6

Gambar 2.49 Tampilan Analisis Eta di Unpad SAS

• Klik **<OK>**. Setelah itu akan muncul output seperti gambar di bawah ini

Correlation Analysis

Eta

Data source: DataEta2

Variables: Pabrik, Suhu_Pengolahan_Produk

Test Statistics						
Dahuilt	Suhu_Pengolahan_Pro					
Padrik	N	Value	Value ²	Mean		
[1]	21	948	51,964	45.1429		
[2]	29	1,661	109,097	57.2759		
Total	50	2,609	161,061			

Eta	0.2682
F	3.7209
F _(0.01)	7.3140
F(0.05)	4.0850

Gambar 2.50 Tampilan *output* Uji Eta di Unpad SAS

F. UJI JASPEN'S M

Jaspen's M (atau *Jaspen's coefficient of multiserial association*) digunakan untuk mengukur hubungan variabel dengan skala ordinal dan variabel dengan skala interval (rasio). Metode ini memungkinkan peneliti untuk memaksimalkan tingkat pengukuran bagi kedua jenis variabel.

Untuk melakukan pengujian dengan tepat, maka kita harus memenuhi beberapa asumsi. Pertama, pastikan distribusi data bersifat acak. Lalu jenis skala yang digunakan bersifat ordinal dan interval (rasio).

Contoh Masalah 2.11

Suatu penelitian dilakukan untuk melihat hubungan antara tingkat pendidikan dengan penghasilan karyawan di suatu perusahaan. Data yang

dihasilkan dari pengukuran terhadap 50 karyawan di perusahaan tersebut dapat dilihat pada tabel berikut ini:

Nomor	Pendidikan	Penghasilan	Nomor	Pendidikan	Penghasilan
Responden	4	05	Responden	2	15
1	4	90	20	3	40
2	3	50	21	1	25
3	4	80	28	4	95
4	2	34	29	3	52
5	2	30	30	1	30
6	1	20	31	3	55
7	3	52	32	3	52
8	2	40	33	3	60
9	3	58	34	2	32
10	1	18	35	3	65
11	2	35	36	3	49
12	3	55	37	4	75
13	1	24	38	2	37
14	3	50	39	4	80
15	1	30	40	4	75
16	2	40	41	3	52
17	4	80	42	4	100
18	1	20	43	3	60
19	3	49	44	4	85
20	3	58	45	1	28
21	3	45	46	4	90
22	3	55	47	4	85
23	2	28	48		48
24	4	85	49	2	30
25	3	50	50	2	38

Tabel 2.36 Data Contoh Masalah 6.1

Keterangan:

Variabel pendidikan berisi data tingkat pendidikan karyawan dengan skala ordinal Pendidikan: 1 = SD; 2 = SMP; 3 = SMA; 4 = Perguruan Tinggi Variabel penghasilan berisi data penghasilan karyawan dengan skala rasio

Pengerjaan Secara Manual

- 1. Tentukan hipotesis. Rumuskan H_0 dan H_1 seperti dibawah ini.
 - H_0 : Tidak terdapat hubungan yang signifikan antara tingkat pendidikan dengan penghasilan karyawan di suatu perusahaan
 - H_1 : Terdapat hubungan yang signifikan antara tingkat pendidikan dengan penghasilan karyawan di suatu perusahaan

2. Statistik Uji

• Tetapkan variabel yang akan diuji.

- X = Pendidikan
- Y = Penghasilan

Tabel 2.37 Variabel yang Diuji										
ID	ID X Y									
1										
N										

Hitung nilai standar deviasi

Untuk menghitung nilai Jaspen's M, kita harus mengetahui nilai standar deviasi dari variabel Y. Buatlah tabel bantu untuk data variabel Y yang berisi kolom-kolom sebagai berikut untuk mempermudah.

adel Bantu Standar Devlasi Variadel							
Data ke-i							
Y _i	Y_i^2						
ΣY	ΣY^2						
	Data <u> <u> </u> </u>						

Tabel 2.38 Tabel Bantu Standar Deviasi Variabel Y

Setelah itu, untuk menghitung nilai standar deviasi dari variabel Y, kita dapat menggunakan rumus sebagai berikut.

$$S_{y} = \sqrt{\frac{\Sigma Y^{2} - \frac{(\Sigma Y)^{2}}{N_{r}}}{N_{r}}}$$

Dimana:

 S_y = Standard deviation of Y ΣY = Jumlah nilai Y ΣY^2 = Jumlah nilai Y kuadrat N_r = Ukuran sampel

Dalam kasus di atas, tabel bantu adalah sebagai berikut.

Tabel 2.39 Tabel Bantu Standar Deviasi untuk Contoh Masalah 6.1

Sampel (i)	Data ke-i		Sampal (i)	Data ke-i		
	Y _i	Y_i^2	Samper (I)	Y _i	Y_i^2	

1	95	9025	26	45	2025
2	50	2500	27	25	625
3	80	6400	28	95	9025
4	34	1156	29	52	2704
5	30	900	30	30	900
6	20	400	31	55	3025
7	52	2704	32	52	2704
8	40	1600	33	60	3600
9	58	3364	34	32	1024
10	18	324	35	65	4225
11	35	1225	36	49	2401
12	55	3025	37	75	5625
13	24	576	38	37	1369
14	50	2500	39	80	6400
15	30	900	40	75	5625
16	40	1600	41	52	2704
17	80	6400	42	100	10000
18	20	400	43	60	3600
19	49	2401	44	85	7225
20	58	3364	45	28	784
21	45	2025	46	90	8100
22	55	3025	47	85	7225
23	28	784	48	48	2304
24	85	7225	49	30	900
25	50	2500	50	38	1444
				ΣY_i	ΣY_i^2
				= 2.624	= 161.886

Untuk penghitungannya adalah sebagai berikut.

$$S_{y} = \sqrt{\frac{161.886 - \frac{(2.624)^{2}}{50}}{50}}$$
$$S_{y} = \sqrt{\frac{24.178,48}{50}}{50}}$$
$$S_{y} = 21,9902$$

 Buatlah sebuah tabel bantu berdasarkan kategori variabel X, yang diurut dari nilai besar ke kecil, yang berisi kolom-kolom sebagai berikut.

	Tabel 2.40										
	Tabel Bantu Uji Jaspen										
i	$\overline{Y_i} p C_p O_b O_a O_b - O_a (O_b - O_a)^2 \overline{Y_i}(O_b - O_a)$										
							P				
Κ	:		:	:							

1		:	:					
	$\Sigma \overline{Y}$						$(0_b - 0_a)^2$	$\Sigma \overline{Y}_i(O_b - O_a)$
							$\frac{\Sigma}{P}$	
Kete	eranga	an:						
\overline{Y}_i		= Rá	ata-ra	ata va	ariabe	el Y pada ke	elompok i	
$\Sigma \overline{Y}$		= Ju	mlah	n rata	-rata	variabel Y		
n		= uk	urar	ı sam	pel d	ata tiap kel	ompok	
Ρ				bany	ak se	luruh data		
C_p		= Fr	ekue	ensi k	umul	atif p		
$\dot{O_b}$		= Ti	nggi	ordin	at no	rmal		
O_a		= 01	rdina	t yan	g ditı	ırunkan satı	u baris dari baris (O_b

Untuk contoh masalah di atas, tabel bantu tersebut adalah:

_								
i	\overline{Y}_i	p	Cp	0 _b	0 _a	$\boldsymbol{O}_{\boldsymbol{b}} - \boldsymbol{O}_{\boldsymbol{a}}$	$\frac{(\boldsymbol{O}_b-\boldsymbol{O}_a)^2}{P}$	$\overline{Y}_i(\boldsymbol{O}_b-\boldsymbol{O}_a)$
4	85,4167	0,24	0,24	0,3108	0,0000	0,3108	0,40248	26,5475
3	53,0000	0,40	0,64	0,3740	0,3108	0,0632	0,0099	3,3496
2	34,4000	0,20	0,84	0,2433	0,3740	-0,1307	0,0854	-4,496
1	24.3750	0,16	1,00	0,0000	0,2433	-0,2433	0,3699	-5,930
	199,1917						0,86768	19,4711

Tabel 2.41 Tabel Bantu Contoh Masalah 6.1

• Hitung koefisien Jaspen (M) dengan rumus berikut.

$$M = \frac{\Sigma(\bar{Y}_i)(O_b - O_a)}{S_y \Sigma \left[\frac{(O_b - O_a)^2}{P}\right]}$$

Setelah membuat tabel di atas, kemudian hitunglah menggunakan rumus Jaspen.

$$M = \frac{19,4711}{(21,9902)(0,86768)}$$
$$M = 1,0203$$

Hitung signifikansi statistik dari Jaspen's M

Untuk mengetahui signifikansi statistik dari Jaspen's M, kita harus mengubah nilai M menjadi koefisien yang setara dengan Pearson's r. Dengan rumus berikut:

$$r = M \sqrt{\Sigma \left[\frac{(O_b - O_a)^2}{P} \right]}$$

Untuk contoh masalah di atas adalah:

$$r = 1,0203\sqrt{0,86768}$$

r = 0,9505

- Cari *r*_{tabel} (lihat lampiran 4) untuk:
 - $df = N_r 2$
 - $\alpha = 0,10,0,05, dan 0,01$ dari tabel r

Untuk contoh masalah di atas, df = 48, maka nilai r_{tabel} untuk $\alpha = 0,10,0,05, dan 0,01$ adalah:

 $r_{(48;\,0,10)} = 0,2310$

 $r_{(48;\,0,05)} = 0,2730$

 $r_{(48;\,0,01)} = 0,3540$

3. Kriteria Uji (Daerah Kritis)

Dengan menggunakan rumus *degrees of freedom*, $df = N_T - 2$. Carilah nilai kritis pada tabel Distribusi R.

Jika nilai r lebih besar dari nilai kritis yang didapat, maka koefisien korelasi yang didapat signifikan secara statistik dan H_0 dapat ditolak.

4. Kesimpulan

Kesimpulannya adalah H_0 ditolak, artinya terdapat hubungan yang signifikan antara tingkat pendidikan dengan penghasilan karyawan di suatu perusahaan

Pengerjaan dengan Unpad SAS

• Open tabel data menu File->Open

Gambar 2.51 Tampilan menu *File* di Unpad SAS

Buka file data dengan klik <ikon open file>, pada nama tabel yang ingin digunakan.

Pilih menu Analyze->Correlate->Jaspen's M Analysis

l	ЛГ	PAD	SAS	,)			
	File	Edit	View	Data	Analyze	Help	
ID:	1				Descriptive \$	Statistic	
	ID	Pendidi	kan	Penghasila			
	1		4		Correlate		Theta Analysis
	2		3		Nonparamet	ric Tests	Eta Analysis
	4	_	2		Sampling		Jaspen's M Analysis
	5		2				outpett o this analysis
	6		1		Psychometri	c Test	Cramer V Analysis
	7		3		52		Spearman Analysis
	8		2		40		
	9		3		10		Gamma Analysis
	11		2		35		
	12		3		55		
	13		1		24		
	14		3		50		
	15		1		30		
	16		2		40		
	17		4		80		
	18		1		20		
	19		3		49		
	20		3		45		
	21		3		45		

Gambar 2.53 Tampilan tabel yang telah diinput dan menu Analyze

• Pilih variabel *pendidikan* untuk *Variable 1 (Ordinal)* dan *Penghasilan* untuk *Variable 2 (Interval)*, yaitu seperti pada gambar di bawah ini.

Correlation: Jaspen's M Analysis			×
Variable List		Variable #1 (Ordinal):	
	·	📶 Pendidikan	A
			Ŧ
		Variable #2 (Interval):	
[🖋 Penghasilan	A
~			~
UK Reset		Cancel Help	
Authors: Ratna Jatnika & Mustofa	a Ha	ffas	Version 1.3.2.6

Gambar 2.54 Tampilan Analisis Jaspen's M di Unpad SAS

• Klik **<OK>**. Setelah itu akan muncul output seperti gambar di bawah ini.

Correlation Analysis

Jaspen

Data source: datajaspenpertama

Variables: Pendidikan, Penghasilan

Test Statistics									
Den Raller		Penghasilan							
Pendidikan	Mean	р	Cp	0 _b	0 _a				
[4]	85.4167	0.2400	0.2400	0.3108	0.0000				
[3]	53.0000	0.4000	0.6400	0.3740	0.3108				
[2]	34.4000	0.2000	0.8400	0.2433	0.3740				
[1]	24.3750	0.1600	1.0000	0.0000	0.2433				

Sy	21.9902
М	1.0203
r	0.9505
r _(0.01)	0.3540
r _(0.05)	0.2730

Contoh Masalah 2.12

Suatu penelitian dilakukan untuk melihat hubungan antara tingkat kemampuan berbahasa Inggris dengan nilai ujian di suatu sekolah dasar. Data yang dihasilkan dari pengukuran terhadap 30 siswa dan siswi di sekolah dasar tersebut dapat dilihat pada tabel berikut ini:

No	Kem. Bhs Inggris	Nilai Ujian		No	Kem. Bhs Inggris	Nilai Ujian			
1	2	73		26	4	76			
2	2	75		27	4	87			
3	3	79		28	4	77			
4	4	82		29	1	77			
5	1	56		30	1	76			
6	1	55		31	3	78			
7	3	67		32	1	87			
8	4	89		33	1	67			
9	3	88		34	1	69			
10	4	76		35	1	80			

Tabel 2.42 Data Contoh Masalah 6.2

11	4	56	36	3	94
12	3	78	37	4	96
13	3	95	38	3	66
14	3	56	39	2	68
15	3	77	40	1	67
16	3	87	41	2	69
17	3	69	42	3	76
18	3	77	43	4	78
19	3	75	44	2	88
20	2	75	45	2	83
21	2	75	46	3	81
22	2	78	47	3	71
23	2	68	48	3	78
24	3	88	49	1	65
25	4	65	50	2	79

Keterangan:

Variabel Kem.Bhs Inggris berisi data tingkat kemampuan berbahasa Inggris pada siswa siswi dengan skala ordinal

Kemampuan Berbahasa Inggris : 1 = Tidak bisa; 2 = Rendah; 3 = Sedang; 4=Tinggi

Variabel Nilai Ujian berisi data nilai ujian siswa siswi dengan skala interval

Pengerjaan Secara Manual

- 1. Tentukan hipotesis. Rumuskan H_0 dan H_1 seperti dibawah ini.
 - H_0 : Tidak terdapat hubungan yang signifikan antara tingkat kemampuan berbahasa Inggris dengan nilai ujian siswa dan siswi di suatu sekolah dasar.
 - H_1 : Terdapat hubungan yang signifikan antara tingkat kemampuan berbahasa Inggris dengan nilai ujian siswa dan siswi di suatu sekolah dasar.
- 2. Statistik Uji
 - Tetapkan variabel yang akan diuji.
 - X = Kemampuan Berbahasa Inggris
 - Y = Nilai Ujian

Tabe	el 2.43	3
Variabel	vang	Diuii

· •···································						
ID	Х	Y				
1						
N						

Hitung nilai standar deviasi

Untuk menghitung nilai Jaspen's M, kita harus mengetahui nilai standar deviasi dari variabel Y. Buatlah tabel bantu untuk data variabel Y yang berisi kolom-kolom sebagai berikut untuk mempermudah.

Tabel 2.44 Tabel Bantu Standar Deviasi Variabel Y						
Sampel (i)	Data	ı ke- <i>i</i>				
	Y _i	Y_i^2				
1						
2						
i						
Σ	ΣY	ΣY^2				

Setelah itu, untuk menghitung nilai standar deviasi dari variabel Y, kita dapat menggunakan rumus sebagai berikut.

$$S_y = \sqrt{\frac{\Sigma Y^2 - \frac{(\Sigma Y)^2}{N_r}}{N_r}}$$

Dimana:

 S_y = Standard deviation of Y ΣY = Jumlah nilai Y ΣY^2 = Jumlah nilai Y kuadrat N_r = Ukuran sampel

Dalam kasus di atas, tabel bantu adalah sebagai berikut.

Compol (i)	Data	ı ke-i	Commol (i)	Data ke-i			
Samper (I)	Y_i	Y_i^2	Samper (I)	Y_i	Y_i^2		
1	73	5329	26	76	5776		
2	75	5625	27	87	7569		
3	79	6241	28	77	5929		
4	82	6724	29	77	5929		
5	56	3136	30	76	5776		
6	55	3025	31	78	6084		
7	67	4489	32	87	7569		
8	89	7921	33	67	4489		
9	88	7744	34	69	4761		

Tabel 2.45 Tabel Bantu Standar Deviasi untuk Contoh Masalah 6.2

Compol (i)	Data	ke-i	Commol (i)	Data ke-i		
Samper (I)	Y_i	Y_i^2	Samper (I)	Y _i	Y_i^2	
10	76	5776	35	80	6400	
11	56	3136	36	94	8836	
12	78	6084	37	96	9216	
13	95	9025	38	66	4356	
14	56	3136	39	68	4624	
15	77	5929	40	67	4489	
16	87	7569	41	88	7744	
17	69	4761	42	76	5776	
18	77	5929	43	78	6084	
19	75	5625	44	88	7744	
20	75	5625	45	83	6889	
21	75	5625	46	81	6561	
22	78	6084	47	71	5041	
23	68	4624	48	78	6084	
24	88	7744	49	65	4225	
25	65	4225	50	79	6241	
				ΣY_i	ΣY_i^2	
				= 3.811	= 295.323	

Untuk penghitungannya adalah sebagai berikut.

$$S_{y} = \sqrt{\frac{295.323 - \frac{(3.811)^{2}}{50}}{50}}$$
$$S_{y} = \sqrt{\frac{4.848,58}{50}}{50}}$$
$$S_{y} = 9,8474$$

• Buatlah sebuah tabel bantu berdasarkan kategori variabel X, yang diurut dari nilai besar ke kecil, yang berisi kolom-kolom sebagai berikut.

					Ta	Tabel 2 bel Bantu l	.46 Jji Jaspen	
i	\overline{Y}_i	p	C _p	<i>O</i> _b	<i>0</i> _{<i>a</i>}	$O_b - O_a$	$\frac{(O_b - O_a)^2}{P}$	$\bar{Y}_i(O_b-O_a)$
k								
1								
	$\Sigma \overline{Y}$						$\sum \frac{(O_b - O_a)^2}{P}$	$\Sigma \overline{Y}_i(O_b - O_a)$
Vat								

Keterangan: \bar{Y}_i = Rata-rata variabel Y pada kelompok i $\Sigma \bar{Y}$ = Jumlah rata-rata variabel Y

 $p = \frac{ukuran \, sampel \, data \, tiap \, kelompok}{value constraints}$

- banyak seluruh data
- C_p = Frekuensi kumulatif p
- O_b = Tinggi ordinat normal (Lampiran 5)
- O_a = Ordinat yang diturunkan satu baris dari baris O_b

Untuk contoh masalah di atas, tabel bantu tersebut adalah:

	Tabel Banki Conton Masalah 0.2								
i	\overline{Y}_i	p	C_p	0 _b	0 _a	$\boldsymbol{O}_b - \boldsymbol{O}_a$	$(\boldsymbol{\theta}_b - \boldsymbol{\theta}_a)^2$	$\overline{Y}_i(\boldsymbol{O}_b-\boldsymbol{O}_a)$	
							Р		
4	78,2	0,2	0,2	0,2799	0,0000	0,2799	0,39172	21,88818	
3	77,8947	0,38	0,58	0,3908	0,2799	0,1109	0,03236	8,63852	
2	77,2727	0,22	0,8	0,2799	0,3908	-0,1109	0,0559	-8,56954	
1	69,9	0,2	1,00	0,0000	0,2799	-0,2799	0,39172	-19,565	
Σ	303,2667						0,8717	2,39216	

Tabel 2.47 Tabel Bantu Contoh Masalah 6.2

Hitung koefisien Jaspen (M) dengan rumus berikut.

$$M = \frac{\Sigma(\bar{Y}_i)(O_b - O_a)}{S_y \Sigma \left[\frac{(O_b - O_a)^2}{P}\right]}$$

Setelah membuat tabel di atas, kemudian hitunglah menggunakan rumus Jaspen.

$$M = \frac{2,39216}{(9,8474)(0,8717)}$$

$$M = 0,27867$$

Hitung signifikansi statistik dari Jaspen's M

Untuk mengetahui signifikansi statistik dari Jaspen's M, kita harus mengubah nilai M menjadi koefisien yang setara dengan Pearson's r. Dengan rumus berikut:

$$r = M \sqrt{\Sigma \left[\frac{(O_b - O_a)^2}{P}\right]}$$

Untuk contoh masalah di atas adalah:

$$r = 0,27867\sqrt{0,8717}$$

$$r = 0,2602$$

- Cari *r*_{tabel} (lihat lampiran 4) untuk:
 - $df = N_r 2$
 - $\alpha = 0,10,0,05, dan 0,01$ dari tabel r.

Untuk contoh masalah di atas, df = 48, maka nilai r_{tabel} untuk $\alpha = 0,10,0,05, dan 0,01$ adalah:

 $r_{(48;0,10)} = 0,2310$

 $r_{(48;\,0,05)} = 0,2730$

 $r_{(48;\,0,01)} = 0,3540$

3. Kriteria Uji (Daerah Kritis)

Dengan menggunakan rumus *degrees of freedom*, $df = N_T - 2$. Carilah nilai kritis pada tabel Distribusi R.

Jika nilai r lebih besar dari nilai kritis yang didapat, maka koefisien korelasi yang didapat signifikan secara statistik dan H_0 dapat ditolak.

4. Kesimpulan

Kesimpulannya adalah *H*⁰ diterima, artinya tidak terdapat hubungan yang signifikan antara tingkat kemampuan berbahasa Inggris dengan nilai ujian siswa dan siswi di suatu sekolah dasar.

Pengerjaan dengan Unpad SAS

• Open tabel data menu File->Open

Gambar 2.56 Tampilan menu *File* di Unpad SAS

Buka file data dengan klik <ikon open file>, pada nama tabel yang ingin digunakan.

Gambar 2.57 Tampilan dialog *Open/Delete* Table di Unpad SAS

Pilih menu Analyze->Correlate->Jaspen's M Analysis

l	JN	PAD	SAS				
	File	View	Data	Analyze	Help		
ID:	1			Descriptive S	Statistic		
	ID	Kem_Bh	s_Inggris	Corrolato		Thota Analysis	
	1			Correlate		Theta Analysis	
	2			Nonparamet	ric Tests	Eta Analysis	
	3 4		_	O lin			
	5			Sampling		Jaspen's M Analysis	
	6			Psychometri	c Test	Cramer V, TSuprow, and	
	7			3	67	Pearson Analysis	
	8			4	89	 Spearman Analysis	
	9			3	88	 opournant analysis	
	10			4	76	 Gamma Analysis	
	11			4	56		
	12			3	78		
	13			3	95		
	14			3	50		
	16			3	87		
	17			3	69		
	18			3	77		
	19			3	75		
	20			2	75		
	21			2	75		

Tampilan tabel yang telah diinput dan menu Analyze

 Pilih variabel Kem_Bhs_Inggris untuk Variable 1 (Ordinal) dan Nilai_Ujian untuk Variable 2 (Interval), yaitu seperti pada gambar di bawah ini.

Variable List		Variable #1 (Ordinal):	
	^	Kem_Bhs_Inggris	*
			v
		Variable #2 (Interval):	
	<	nilai_Ujian 💞	<u>^</u>
	Ŧ		Ŧ
	Deset	Consol	
UK	Reset	Cancer Help	

Gambar 2.59 Tampilan Analisis Jaspen's M di Unpad SAS

• Klik **<OK>**. Setelah itu akan muncul output seperti gambar di bawah ini.

Correlation Analysis

Jaspen

Data source: DataJaspen2_

Variables: Kem_Bhs_Inggris, Nilai_Ujian

Test Statistics								
V	Nilai_Ujian							
Kem_Bns_Inggris	Mean	р	Cp	0 _b	0 _a			
[4]	78.2000	0.2000	0.2000	0.2799	0.0000			
[3]	77.8947	0.3800	0.5800	0.3908	0.2799			
[2]	77.2727	0.2200	0.8000	0.2799	0.3908			
[1]	69.9000	0.2000	1.0000	0.0000	0.2799			

Sy	9.8474
М	0.2787
r	0.2602
r _(0.01)	0.3540
r _(0.05)	0.2730

Gambar 2.60 Tampilan *output* Jaspen's M Analysis di Unpad SAS

G. UJI PEARSON PRODUCT MOMENT

Uji ini dapat digunakan untuk menguji hubungan antara dua variabel yang memiliki skala pengukuran paling sedikit interval. Untuk melakukan pengujian dengan tepat, maka kita harus memenuhi beberapa asumsi. Pertama, pastikan data berasal dari sampel acak. Lalu seluruh jenis skala yang digunakan bersifat interval/rasio.

Contoh Masalah 2.13

Suatu penelitian dilakukan untuk melihat hubungan antara nilai UTS siswa dengan durasi tidur di malam sebelum UTS berlangsung. Data yang dihasilkan dari pengukuran terhadap 20 siswa di sekolah tersebut dapat dilihat pada tabel berikut ini:

ID	Nilai	DT (jam)		ID	Nilai	DT (jam)	
1	96	6.5		11	81	6.0	
2	94	7.5		12	81	6.0	
3	89	7.0		13	80	6.5	
4	87	7.5		14	79	5.0	
5	87	8.0		15	78	7.0	
6	86	7.0		16	75	5.5	
7	85	6.5		17	75	6.0	
8	85	6.5		18	71	5.0	
9	85	8.0		19	65	3.5	
10	82	5.5		20	58	4.0	

Tabel 2.48 Data Contoh Masalah 7.1

KETERANGAN Nilai: Nilai UTS siswa DT: Durasi Tidur (jam)

Dengan taraf nyata 10%, 5%, dan 1% ujilah apakah terdapat hubungan antara nilai UTS siswa dengan durasi tidur siswa?

Pengerjaan Secara Manual

1. Rumusan hipotesis

 H_0 : Tidak terdapat hubungan antara nilai UTS dengan durasi tidur siswa H_1 : Terdapat hubungan antara nilai UTS dengan durasi tidur siswa.

- 2. Statistik Uji
 - Tetapkan variabel yang akan diuji:
 - *X* = nilai UTS siswa

- *Y* = durasi tidur siswa
- α = 10%, 5%, 1%
- Buatlah tabel bantu untuk perhitungan rumus korelasi koefisien pearson

Tu							
ID	Х	Y	XY	X2	Y2		
1							
Ν							
Total							

Tabel 2.49 Tabel Bantu Pearson Product Moment

Untuk contoh masalah di atas, tabel bantunya adalah:

	¥	14	207	10	10
ID	Х	Y	XY	X ²	Y2
1	96	6.5	624	9216	42,25
2	94	7.5	705	8836	56,25
3	89	7.0	623	7921	49
4	87	7.5	652,5	7569	56,25
5	87	8.0	696	7569	64
6	86	7.0	602	7396	49
7	85	6.5	552,5	7225	42,25
8	85	6.5	552,5	7225	42,25
9	85	8.0	680	7225	64
10	82	5.5	451	6724	30,25
11	81	6.0	486	6561	36
12	81	6.0	486	6561	36
13	80	6.5	520	6400	42,25
14	79	5.0	395	6241	25
15	78	7.0	546	6084	49
16	75	5.5	412,5	5625	30,25
17	75	6.0	450	5625	36
18	71	5.0	355	5041	25
19	65	3.5	227,5	4225	12,25
20	58	4.0	232	3364	16
Total	1619	124,5	10248,5	132633	803,25
(Total) ²	2621161	15500,25			

Tabel 2.50 Tabel Bantu Contoh Masalah 7.1

• Hitunglah koefisien korelasi Pearson (r) dengan rumus:

$$r = \frac{N(\Sigma XY) - (\Sigma X)(\Sigma Y)}{\sqrt{(N\Sigma X^2 - (\Sigma X)^2)(N\Sigma Y^2 - (\Sigma Y)^2)}}$$

Untuk contoh masalah di atas, maka perhitungannya adalah sebagai berikut.

$$r = \frac{20(10248,5) - (1619)(124,5)}{\sqrt{(20(132633) - (2621161))(20(803,25) - (15500,25)))}}$$

= 0.807

• Setelah itu, hitunglah nilai Z menggunakan rumus:

$$z = r\sqrt{N-1}$$

Untuk contoh masalah di atas, maka perhitungannya adalah sebagai berikut.

$$z = 0.807\sqrt{20 - 1} = 3.51$$

 Cari nilai Z_{tabel} dari tabel distribusi normal (lihat Lampiran 3) untuk taraf nyata 10%, 5%, dan 1%. Dari tabel diperoleh:

$$Z_{0,10} = 1.6448$$

$$Z_{0,05} = 1.9600$$

$$Z_{0,01} = 2.5760$$

3. Kriteria Uji

Tolak H₀ jika $Z_{hitung} \geq Z_{tabel}$

4. Hasil Uji

Untuk contoh kasus di atas, dengan nilai α = 10%, 5%, dan 1%, maka jika $Z_{hitung} > Z_{tabel}$. Maka H₀ ditolak.

5. Kesimpulan

Dapat disimpulkan bahwa "Terdapat hubungan antara nilai UTS dengan durasi tidur siswa".

Pengerjaan dengan Unpad SAS

• Open tabel data menu File->Open

Gambar 2.61 Tampilan menu *File* di Unpad SAS

Buka file data dengan klik <ikon open file>, pada nama tabel yang ingin digunakan.

Open/Delete Table				
	Table Name			
口言	Pearson1			

Gambar 2.62 Tampilan dialog *Open/Delete Table* di Unpad SAS

Pilih menu Analyze->Correlate->Pearson Analysis

Gambar 2.63 Tampilan tabel yang telah diinput dan menu *Analyze*

Pilih variabel Nilai untuk Variable 1 dan Durasi Tidur (DT) untuk Variable 2, yaitu seperti pada gambar di bawah ini.

Correlation: Pearson Product Moment Test					
Variable List		Variable #1 (Interval):		*	
		🖋 Nilai	^		
			-		
		Variable #2 (Interval):			
	<	d DT	^		
-	-		-		
OK Res	et 🗌	Cancel Help			
				•	
			•		

Gambar 2.64

Tampilan Analisis Pearson Product Moment di Unpad SAS

• Klik **<OK>**. Setelah itu akan muncul output seperti gambar di bawah ini

Correlation Analysis

Pearson Product Moment

Data source: Pearson1

Variables: Nilai, DT

i	Nilai X _i	DT Y _i
1	96	7
2	94	8
3	89	7
4	87	8
5	87	8
6	86	7
7	85	7
8	85	7
9	85	8
10	82	6
11	81	6
12	81	6
13	80	7
14	79	5
15	78	7
16	75	6
17	75	6
18	71	5
19	65	4
20	58	4
Total	1,619	125

Test Statistics				
r	0.8072			
z	3.5185			
Z _(0.10)	1.6448			
Z _(0.05)	1.9600			
Z _(0.01)	2.5760			

Gambar 2.65 Tampilan *output* Pearson Product Moment Analysis di Unpad SAS

Contoh Masalah 2.14

Pak Ali ingin mengetahui apakah ada hubungan antara pengawasan (Control) dengan kinerja (Performance) di tempat kerja. Data diambil dari 37 orang pegawai.

Tabel 2.51

	Data Contoh Masalah 7.2													
ID		С	Р		ID	С	Р		ID	С	Р	ID	С	Р
	1	69	94		11	75	90		21	39	82	31	70	94
	2	64	101		12	76	104		22	81	104	32	71	89
	3	79	106		13	67	79		23	74	100	33	45	65
	4	69	84		14	72	85		24	67	88	34	81	106
	5	72	104		15	72	94		25	73	96	35	69	88
	6	75	103		16	71	89		26	59	105	36	70	96
	7	76	89		17	78	104		27	80	104	37	79	100
	8	75	95		18	73	89		28	84	109			
	9	78	104		19	71	88		29	79	106			
1	0	77	91		20	64	85		30	74	96			
KET	KETERANGAN													

C=Control (Pengawasan) P=Performance (Kinerja)

Dengan taraf nyata 10%, 5%, dan 1% ujilah apakah terdapat hubungan antara pengawasan dengan kinerja pegawai?

Pengerjaan Secara Manual

- 1. Rumusan hipotesis
 - H_0 : Tidak terdapat hubungan antara pengawasan dengan kinerja pegawai.
 - H_1 : Terdapat hubungan antara pengawasan dengan kinerja pegawai.
- 2. Statistik Uji
 - Tetapkan variabel yang akan diuji:
 - X = pengawasan
 - *Y* = kinerja pegawai
 - α = 10%, 5%, 1%
 - Buatlah tabel bantu untuk perhitungan rumus korelasi koefisien pearson

Tabel 2.52 Tabel Bantu Contoh Masalah 7.2						
V	Х	Y	XY	X2	Y2	
1	69	94	6486	4761	8836	

	~	1
36	4761	8836

2	64	101	6464	4096	10201
3	79	106	8374	6241	11236
4	69	84	5796	4761	7056
5	72	104	7488	5184	10816
6	75	103	7725	5625	10609
7	76	89	6764	5776	7921
8	75	95	7125	5625	9025
9	78	104	8112	6084	10816
10	77	91	7007	5929	8281
11	75	90	6750	5625	8100
12	76	104	7904	5776	10816
13	67	79	5293	4489	6241
14	72	85	6120	5184	7225
15	72	94	6768	5184	8836
16	71	89	6319	5041	7921
17	78	104	8112	6084	10816
18	73	89	6497	5329	7921
19	71	88	6248	5041	7744
20	64	85	5440	4096	7225
21	39	82	3198	1521	6724
22	81	104	8424	6561	10816
23	74	100	7400	5476	10000
24	67	88	5896	4489	7744
25	73	96	7008	5329	9216
26	59	105	6195	3481	11025
27	80	104	8320	6400	10816
28	84	109	9156	7056	11881
29	79	106	8374	6241	11236
30	74	96	7104	5476	9216
31	70	94	6580	4900	8836
32	71	89	6319	5041	7921
33	45	65	2925	2025	4225
V	81	106	8586	6561	11236
35	69	88	6072	4761	7744
36	70	96	6720	4900	9216
37	79	100	7900	6241	10000
Total	2648	3506	252969	192390	335494
(Total) ²	7011904	12292036			

• Hitunglah koefisien korelasi Pearson (r). $N(\Sigma YY) = (\Sigma X)(\Sigma Y)$

$$r = \frac{N(\Sigma XY) - (\Sigma X)(\Sigma Y)}{\sqrt{(N\Sigma X^2 - (\Sigma X)^2)(N\Sigma Y^2 - (\Sigma Y)^2)}}$$

= $\frac{37(252969) - (2648)(3506)}{\sqrt{(37(192390) - (7011904))(37(335494) - (12292036))}}$
= 0.6684

• Setelah itu, hitunglah nilai Z:

$$z = r\sqrt{N-1}$$

z = 0.6684 $\sqrt{37-1}$ = 4.01

• Cari nilai Z_{tabel} dari tabel distribusi normal (lihat Lampiran 3) untuk taraf nyata 10%, 5%, dan 1%. Dari tabel diperoleh:

$$Z_{0,10} = 1.6448$$

 $Z_{0,05} = 1.9600$

$$Z_{0.01} = 2.5760$$

3. Kriteria Uji

Tolak H₀ jika $Z_{hitung} \geq Z_{tabel}$

4. Hasil Uji

Untuk contoh kasus di atas, dengan nilai α = 10%, 5%, dan 1%, maka jika $Z_{hitung} > Z_{tabel}$. Maka H₀ ditolak.

5. Kesimpulan

Dapat disimpulkan bahwa " Terdapat hubungan antara pengawasan dengan kinerja pegawai".

Pengerjaan dengan Unpad SAS

• Open tabel data menu File->Open

Gambar 2.66 Tampilan menu *File* di Unpad SAS

Buka file data dengan klik <ikon open file>, pada nama tabel yang ingin digunakan.
Open/Delete	Open/Delete Table								
	Table Name								
D	Pearson2	-							

Gambar 2.67 Tampilan dialog *Open/Delete Table* di Unpad SAS

Pilih menu Analyze->Correlate->Pearson Analysis

l	ЛГ	P/	٩D	SAS			
1	File	'	View	Data	Analyze	Help	
D:	1				Descriptive S	Statistic	
	ID	С	Р		Corrolata		Thete Applysia
	1	69	94		Correlate		meta Analysis
	2	64	101		Nonparamet	ric Tests	Eta Analysis
	3	79	106		0 7		to a set of the set of the
	4	69	84		Sampling		Jaspen's M Analysis
	5	72	104		Psychometri	c Test	Cramer V. TSuprow. and
	6	75	103				Pearson Analysis
	7	76	89				
	8	75	95				Spearman Analysis
	9	78	104				Gamma Analysis
	10	//	91				
	11	75	90				Pearson Analysis
	12	76	104				
	13	0/	/9				
	14	72	85				
	15	72	94				
	17	71	104				
	10	78	204				
	10	73	09				
	20	64	00				
	20		05				

Gambar 2.68 Tampilan tabel yang telah diinput dan menu *Analyze*

• Pilih variabel *Control (C)* untuk *Variable 1* dan *Performance (P)* untuk *Variable 2,* yaitu seperti pada gambar di bawah ini.

Correlation: Pearson Product	Moment	t Test	×
Variable List	T	Variable #1 (Interval):	
*	>	da c ▲	
		-	
		Variable #2 (Interval):	
	<	₽ ▲	
-		-	
OK Reset		Cancel Help	
Authors: Ratna Jatnika & Mu	ustofa Ha	affas Version 1	.3.2.6

Gambar 2.69 Tampilan Analisis Pearson Product Moment di Unpad SAS

• Klik **<OK>**. Setelah itu akan muncul output seperti gambar di bawah ini

Со	rela	tion	Analy	sis
Pear	son P	rodu	ct Mo	ment
Da	ta soi	irce: I	earso	n2
	Vari	ablee	C D	
	van	abies	. C, F	
	i	C Xi	P Yi	
	1	69	. 94	
	2	64	101	
	3	79	106	
	4	69	84	
	5	72	104	
	6	75	103	
	7	76	89	
	8	75	95	
	9	78	104	
	10	77	91	
	11	75	90	
	12	76	104	
	13	67	79	
	14	72	85	
	15	72	94	
	16	71	89	
	17	78	104	
	18	73	89	
	19	71	88	
	20	64	85	
	21	39	82	
	22	81	104	
	23	74	100	
	24	67	88	
	25	73	96	
	26	59	105	
	27	80	104	
	28	84	109	
	29	79	106	
	30	74	96	
	31	70	94	
	32	71	89	
	33	45	65	
	34	81	106	
	35	69	88	
	36	70	96	
	37	79	100	
	Total	2,648	3,506	

Test St	atistics
r	0.6684
z	4.0106
Z _(0.10)	1.6448
Z _(0.05)	1.9600
Z _(0.01)	2.5760

Gambar 2.70 Tampilan *output* Pearson Product Moment Analysis di Unpad SAS

3 Latihan Soal

Suatu penelitian dilakukan untuk melihat minat dan motivasi belajar mahasiswa baru di Universitas X. Pengambilan data terhadap 30 mahasiswa baru tersebut memberikan hasil sebagai tercantum pada tabel di bawah ini:

No	JK	Minat	Motivasi	IPK	No	JK	Minat	Motivasi	IPK
1	1	0	40	3,12	16	2	1	18	2,43
2	1	1	25	3,43	17	2	1	16	2,76
3	1	0	26	3,00	18	2	0	15	3,87
4	1	0	35	3,08	19	2	0	10	3,45
5	1	0	27	2,87	20	2	1	40	3,12
6	1	1	17	2,86	21	1	0	20	3,15
7	1	1	18	2,56	22	2	0	25	3,47
8	1	0	21	3,88	23	2	1	26	3,25
9	1	0	25	2,74	24	1	1	16	2,61
10	1	1	16	3,96	25	1	1	32	2,92
11	2	1	32	2,90	26	1	1	15	2,78
12	2	0	32	3,43	27	1	0	17	3,87
13	2	0	40	3,21	28	2	1	40	2,90
14	2	1	440	3,44	29	2	1	40	3,84
15	2	1	30	3,33	30	1	1	36	2,95

Keterangan:

JK (Jenis Kelamin): 1=Laki-laki, 2=Perempuan Minat (Minat ketika masuk kuliah): 0=tidak berminat, 1=berminat Motivasi (Motivasi ketika masuk kuliah): 1=tidak termotivasi; 2=cukup termotivasi; 3=sangat termotivasi

Dengan taraf kepercayaan 95%, jawablah persoalan berikut ini:

- 1. Hitunglah besarnya hubungan antara jenis kelamin dengan IPK!
- 2. Hitunglah besarnya hubungan antara minat saat masuk kuliah dengan tingkat motivasi belajar!
- 3. Hitunglah besarnya hubungan antara tingkat motivasi belajar dengan IPK mahasiswa!

Daftar Pustaka

- Champion, D. J. (1970). *Basic Statistics for Social Research.* United States: Chandler Publishing Company.
- Jatnika, R., Haffas, M., & Agustiani, H. (2019). Uji Korelasi [E-book]. In *Belajar* Statistika dengan UNPAD SAS (2nd ed., pp. 149–173). Unpad Press.
- Ndycan, A. *Korelasi product momen; contoh uji statistik*. Academia.Edu. Retrieved July 18, 2022, from <u>https://www.academia.edu/4833589/Korelasi Product Momen Contoh Uji St</u> <u>atistik</u>
- Siegel, S. (1956). *Nonparametric Statistics for The Behavioral Science*. United States: McGraw-Hill Book Company, Inc.

Lampiran

1. TABEL DISTRIBUSI CHI SQUARE

d.f.	.995	.99	.975	.95	.9	.1	.05	.025	.01
1	0.00	0.00	0.00	0.00	0.02	2.71	3.84	5.02	6.63
2	0.01	0.02	0.05	0.10	0.21	4.61	5.99	7.38	9.21
3	0.07	0.11	0.22	0.35	0.58	6.25	7.81	9.35	11.34
4	0.21	0.30	0.48	0.71	1.06	7.78	9.49	11.14	13.28
5	0.41	0.55	0.83	1.15	1.61	9.24	11.07	12.83	15.09
6	0.68	0.87	1.24	1.64	2.20	10.64	12.59	14.45	16.81
7	0.99	1.24	1.69	2.17	2.83	12.02	14.07	16.01	18.48
8	1.34	1.65	2.18	2.73	3.49	13.36	15.51	17.53	20.09
9	1.73	2.09	2.70	3.33	4.17	14.68	16.92	19.02	21.67
10	2.16	2.56	3.25	3.94	4.87	15.99	18.31	20.48	23.21
11	2.60	3.05	3.82	4.57	5.58	17.28	19.68	21.92	24.72
12	3.07	3.57	4.40	5.23	6.30	18.55	21.03	23.34	26.22
13	3.57	4.11	5.01	5.89	7.04	19.81	22.36	24.74	27.69
14	4.07	4.66	5.63	6.57	7.79	21.06	23.68	26.12	29.14
15	4.60	5.23	6.26	7.26	8.55	22.31	25.00	27.49	30.58
16	5.14	5.81	6.91	7.96	9.31	23.54	26.30	28.85	32.00
17	5.70	6.41	7.56	8.67	10.09	24.77	27.59	30.19	33.41
18	6.26	7.01	8.23	9.39	10.86	25.99	28.87	31.53	34.81
19	6.84	7.63	8.91	10.12	11.65	27.20	30.14	32.85	36.19
20	7.43	8.26	9.59	10.85	12.44	28.41	31.41	34.17	37.57
22	8.64	9.54	10.98	12.34	14.04	30.81	33.92	36.78	40.29
24	9.89	10.86	12.40	13.85	15.66	33.20	36.42	39.36	42.98
26	11.16	12.20	13.84	15.38	17.29	35.56	38.89	41.92	45.64
28	12.46	13.56	15.31	16.93	18.94	37.92	41.34	44.46	48.28
30	13.79	14.95	16.79	18.49	20.60	40.26	43.77	46.98	50.89
32	15.13	16.36	18.29	20.07	22.27	42.58	46.19	49.48	53.49
34	16.50	17.79	19.81	21.66	23.95	44.90	48.60	51.97	56.06
38	19.29	20.69	22.88	24.88	27.34	49.51	53.38	56.90	61.16
42	22.14	23.65	26.00	28.14	30.77	54.09	58.12	61.78	66.21
46	25.04	26.66	29.16	31.44	34.22	58.64	62.83	66.62	71.20
50	27.99	29.71	32.36	34.76	37.69	63.17	67.50	71.42	76.15
55	31.73	33.57	36.40	38.96	42.06	68.80	73.31	77.38	82.29
60	35.53	37.48	40.48	43.19	46.46	74.40	79.08	83.30	88.38
65	39.38	41.44	44.60	47.45	50.88	79.97	84.82	89.18	94.42
70	43.28	45.44	48.76	51.74	55.33	85.53	90.53	95.02	100.43
75	47.21	49.48	52.94	56.05	59.79	91.06	96.22	100.84	106.39
80	51.17	53.54	57.15	60.39	64.28	96.58	101.88	106.63	112.33
85	55.17	57.63	61.39	64.75	68.78	102.08	107.52	112.39	118.24

I	90	59.20	61.75	65.65	69.13	73.29	107.57	113.15	118.14	124.12
ſ	95	63.25	65.90	69.92	73.52	77.82	113.04	118.75	123.86	129.97
I	100	67.33	70.06	74.22	77.93	82.36	118.50	124.34	129.56	135.81

1. TABEL DISTRIBUSI F

df untuk							df untui	c pembil	ang (N1)						
(N2)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	161	199	216	225	230	234	237	239	241	242	243	244	245	245	246
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.40	19.41	19.42	19.42	19.43
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.76	8.74	8.73	8.71	8.70
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.94	5.91	5.89	5.87	5.86
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.70	4.68	4.66	4.64	4.62
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.03	4.00	3.98	3.96	3.94
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.60	3.57	3.55	3.53	3.51
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.31	3.28	3.26	3.24	3.22
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.10	3.07	3.05	3.03	3.01
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.94	2.91	2.89	2.86	2.85
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.82	2.79	2.76	2.74	2.72
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.72	2.69	2.66	2.64	2.62
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.63	2.60	2.58	2.55	2.53
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.57	2.53	2.51	2.48	2.46
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.51	2.48	2.45	2.42	2.40
10	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.46	2.42	2.40	2.37	2.35
1/	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.41	2.38	2.35	2.33	2.31
10	4.41	3.55	3.10	2.93	2.11	2.00	2.56	2.51	2.40	2.41	2.37	2.34	2.31	2.28	2.27
20	4.30	3.52	3.13	2.80	2.74	2.03	2.54	2.40	2.92	2.30	2.34	2.3	2.20	2.20	2.23
20	4.30	3.49	3.10	2.07	2.71	2.00	2.5	2.45	2.38	2.55	2.31	2.20	2.20	2.22	2.20
22	4 30	3.44	3.05	2.04	2.00	2.57	2.46	2.40	2.3/	2.02	2.26	2.23	2.20	2.20	2.10
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.24	2.20	2.18	2.15	2.13
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2 22	2.18	2.15	2.13	2.11
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2 20	2.16	2.14	2.11	2.09
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.18	2.15	2.12	2.09	2.07
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20	2.17	2.13	2.10	2.08	2.06
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.15	2.12	2.09	2.06	2.04
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18	2.14	2.10	2.08	2.05	2.03
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.13	2.09	2.06	2.04	2.01
31	4.16	3.30	2.91	2.68	2.52	2.41	2.32	2.25	2.20	2.15	2.11	2.08	2.05	2.03	2.00
32	4.15	3.29	2.90	2.67	2.51	2.40	2.31	2.24	2.19	2.14	2.10	2.07	2.04	2.01	1.99
33	4.14	3.28	2.89	2.66	2.50	2.39	2.30	2.23	2.18	2.13	2.09	2.06	2.03	2.00	1.98
34	4.13	3.28	2.88	2.65	2.49	2.38	2.29	2.23	2.17	2.12	2.08	2.05	2.02	1.99	1.97
35	4.12	3.27	2.87	2.64	2.49	2.37	2.29	2.22	2.16	2.11	2.07	2.04	2.01	1.99	1.96
36	4.11	3.26	2.87	2.63	2.48	2.36	2.28	2.21	2.15	2.11	2.07	2.03	2.00	1.98	1.95
37	4.11	3.25	2.86	2.63	2.47	2.36	2.27	2.20	2.14	2.10	2.06	2.02	2.00	1.97	1.95
38	4.10	3.24	2.85	2.62	2.46	2.35	2.26	2.19	2.14	2.09	2.05	2.02	1.99	1.96	1.94
39	4.09	3.24	2.85	2.61	2.46	2.34	2.26	2.19	2.13	2.08	2.04	2.01	1.98	1.95	1.93
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.04	2.00	1.97	1.95	1.92
41	4.08	3.23	2.83	2.60	2.44	2.33	2.24	2.17	2.12	2.07	2.03	2.00	1.97	1.94	1.92
42	4.07	3.22	2.83	2.59	2.44	2.32	2.24	2.17	2.11	2.06	2.03	1.99	1.96	1.94	1.91
43	4.07	3.21	2.82	2.59	2.43	2.32	2.23	2.16	2.11	2.06	2.02	1.99	1.96	1.93	1.91
44	4.06	3.21	2.82	2.58	2.43	2.31	2.23	2.16	2.10	2.05	2.01	1.98	1.95	1.92	1.90
45	4.00	3.20	2.61	2.58	2.42	2.31	2.22	Z.15	2.10	2.05	2.01	1.97	1.94	1.82	1.69

df untuk						đ	f untuk	pembi	lang (N	1)					
(N2)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
46	4.05	3.20	2.81	2.57	2.42	2.30	2.22	2.15	2.09	2.04	2.00	1.97	1.94	1.91	1.89
47	4.05	3.20	2.80	2.57	2.41	2.30	2.21	2.14	2.09	2.04	2.00	1.96	1.93	1.91	1.88
48	4.04	3.19	2.80	2.57	2.41	2.29	2.21	2.14	2.08	2.03	1.99	1.96	1.93	1.90	1.88
49	4.04	3.19	2.79	2.56	2.40	2.29	2.20	2.13	2.08	2.03	1.99	1.96	1.93	1.90	1.88
50	4.03	3.18	2.79	2.56	2.40	2.29	2.20	2.13	2.07	2.03	1.99	1.95	1.92	1.89	1.87
51	4.03	3.18	2.79	2.55	2.40	2.28	2.20	2.13	2.07	2.02	1.98	1.95	1.92	1.89	1.87
52	4.03	3.18	2.78	2.55	2.39	2.28	2.19	2.12	2.07	2.02	1.98	1.94	1.91	1.89	1.86
53	4.02	3.17	2.78	2.55	2.39	2.28	2.19	2.12	2.06	2.01	1.97	1.94	1.91	1.88	1.86
54	4.02	3.17	2.78	2.54	2.39	2.27	2.18	2.12	2.06	2.01	1.97	1.94	1.91	1.88	1.86
55	4.02	3.16	2.77	2.54	2.38	2.27	2.18	2.11	2.06	2.01	1.97	1.93	1.90	1.88	1.85
56	4.01	3.16	2.77	2.54	2.38	2.27	2.18	2.11	2.05	2.00	1.96	1.93	1.90	1.87	1.85
59	4.01	3.10	2.11	2.55	2.30	2.20	2.10	2.11	2.05	2.00	1.90	1.85	1.90	1.07	1.65
59	4.00	3.15	2.76	2.53	2.37	2.20	2.17	2.10	2.03	2.00	1.96	1.92	1.89	1.86	1.84
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.95	1.92	1.89	1.86	1.84
61	4.00	3.15	2.76	2.52	2.37	2.25	2.16	2.09	2.04	1.99	1.95	1.91	1.88	1.86	1.83
62	4.00	3.15	2.75	2.52	2.36	2.25	2.16	2.09	2.03	1.99	1.95	1.91	1.88	1.85	1.83
63	3.99	3.14	2.75	2.52	2.36	2.25	2.16	2.09	2.03	1.98	1.94	1.91	1.88	1.85	1.83
64	3.99	3.14	2.75	2.52	2.36	2.24	2.16	2.09	2.03	1.98	1.94	1.91	1.88	1.85	1.83
65	3.99	3.14	2.75	2.51	2.36	2.24	2.15	2.08	2.03	1.98	1.94	1.90	1.87	1.85	1.82
66	3.99	3.14	2.74	2.51	2.35	2.24	2.15	2.08	2.03	1.98	1.94	1.90	1.87	1.84	1.82
67	3.98	3.13	2.74	2.51	2.35	2.24	2.15	2.08	2.02	1.98	1.93	1.90	1.87	1.84	1.82
68	3.98	3.13	2.74	2.51	2.35	2.24	2.15	2.08	2.02	1.97	1.93	1.90	1.87	1.84	1.82
69	3.98	3.13	2.74	2.50	2.35	2.23	2.15	2.08	2.02	1.97	1.93	1.90	1.86	1.84	1.81
70	3.98	3.13	2.74	2.50	2.35	2.23	2.14	2.07	2.02	1.97	1.93	1.89	1.86	1.84	1.81
71	3.98	3.13	2.73	2.50	2.34	2.23	2.14	2.07	2.01	1.97	1.93	1.89	1.86	1.83	1.81
72	3.97	3.12	2.73	2.50	2.34	2.23	2.14	2.07	2.01	1.96	1.92	1.89	1.86	1.83	1.81
73	2.07	3.12	2.13	2.50	2.34	2.23	2.14	2.07	2.01	1.90	1.92	1.09	1.00	1.03	1.01
75	3.97	3.12	2.73	2.30	2.34	2.22	2.13	2.07	2.01	1.96	1.92	1.88	1.85	1.83	1.80
76	3.97	3.12	2.72	2.49	2.33	2.22	2.13	2.06	2.01	1.96	1.92	1.88	1.85	1.82	1.80
77	3.97	3.12	2.72	2.49	2.33	2.22	2.13	2.06	2.00	1.96	1.92	1.88	1.85	1.82	1.80
78	3.96	3.11	2.72	2.49	2.33	2.22	2.13	2.06	2.00	1.95	1.91	1.88	1.85	1.82	1.80
79	3.96	3.11	2.72	2.49	2.33	2.22	2.13	2.06	2.00	1.95	1.91	1.88	1.85	1.82	1.79
80	3.96	3.11	2.72	2.49	2.33	2.21	2.13	2.06	2.00	1.95	1.91	1.88	1.84	1.82	1.79
81	3.96	3.11	2.72	2.48	2.33	2.21	2.12	2.05	2.00	1.95	1.91	1.87	1.84	1.82	1.79
82	3.96	3.11	2.72	2.48	2.33	2.21	2.12	2.05	2.00	1.95	1.91	1.87	1.84	1.81	1.79
83	3.96	3.11	2.71	2.48	2.32	2.21	2.12	2.05	1.99	1.95	1.91	1.87	1.84	1.81	1.79
84	3.95	3.11	2.71	2.48	2.32	2.21	2.12	2.05	1.99	1.95	1.90	1.87	1.84	1.81	1.79
85	3.95	3.10	2.71	2.48	2.32	2.21	2.12	2.05	1.99	1.94	1.90	1.87	1.84	1.81	1.79
86	3.95	3.10	2.71	2.48	2.32	2.21	2.12	2.05	1.99	1.94	1.90	1.87	1.84	1.81	1.78
87	3.95	3.10	2.71	2.48	2.32	2.20	2.12	2.05	1.99	1.94	1.90	1.87	1.83	1.81	1.78
88	3.95	3.10	2.71	2.48	2.32	2.20	2.12	2.05	1.99	1.94	1.90	1.86	1.83	1.81	1.78
90	3.95	3.10	2.71	2.47	2.32	2.20	2.11	2.04	1.99	1.94	1.90	1.86	1.83	1.80	1.78

Sumber : Junaidi, 2010. Titik Persentase Distribusi F untuk

Probabilitas = 0,05.

2. TABEL DISTRIBUSI NORMAL

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.9	.00005	.00005	.00004	.00004	.00004	.00004	.00004	.00004	.00003	.00003
-3.8	.00007	.00007	.00007	.00006	.00006	.00006	.00006	.00005	.00005	.00005
-3.7	.00011	.00010	.00010	.00010	.00009	.00009	.00008	.00008	.00008	.00008
-3.6	.00016	.00015	.00015	.00014	.00014	.00013	.00013	.00012	.00012	.00011
-3.5	.00023	.00022	.00022	.00021	.00020	.00019	.00019	.00018	.00017	.00017
-3.4	.00034	.00032	.00031	.00030	.00029	.00028	.00027	.00026	.00025	.00024
-3.3	.00048	.00047	.00045	.00043	.00042	.00040	.00039	.00038	.00036	.00035
-3.2	.00069	.00066	.00064	.00062	.00060	.00058	.00056	.00054	.00052	.00050
-3.1	.00097	.00094	.00090	.00087	.00084	.00082	.00079	.00076	.00074	.00071
-3.0	.00135	.00131	.00126	.00122	.00118	.00114	.00111	.00107	.00104	.00100
-2.9	.00187	.00181	.00175	.00169	.00164	.00159	.00154	.00149	.00144	.00139
-2.8	.00256	.00248	.00240	.00233	.00226	.00219	.00212	.00205	.00199	.00193
-2.7	.00347	.00336	.00326	.00317	.00307	.00298	.00289	.00280	.00272	.00264
-2.6	.00466	.00453	.00440	.00427	.00415	.00402	.00391	.00379	.00368	.00357
-2.5	.00621	.00604	.00587	.00570	.00554	.00539	.00523	.00508	.00494	.00480
-2.4	.00820	.00798	.00776	.00755	.00734	.00714	.00695	.00676	.00657	.00639
-2.3	.01072	.01044	.01017	.00990	.00964	.00939	.00914	.00889	.00866	.00842
-2.2	.01390	.01355	.01321	.01287	.01255	.01222	.01191	.01160	.01130	.01101
-2.1	.01786	.01743	.01700	.01659	.01618	.01578	.01539	.01500	.01463	.01426
-2.0	.02275	.02222	.02169	.02118	.02068	.02018	.01970	.01923	.01876	.01831
-1.9	.02872	.02807	.02743	.02680	.02619	.02559	.02500	.02442	.02385	.02330
-1.8	.03593	.03515	.03438	.03362	.03288	.03216	.03144	.03074	.03005	.02938
-1.7	.04457	.04363	.04272	.04182	.04093	.04006	.03920	.03836	.03754	.03673
-1.6	.05480	.05370	.05262	.05155	.05050	.04947	.04846	.04746	.04648	.04551
-1.5	.06681	.06552	.06426	.06301	.06178	.06057	.05938	.05821	.05705	.05592
-1.4	.08076	.07927	.07780	.07636	.07493	.07353	.07215	.07078	.06944	.06811
-1.3	.09680	.09510	.09342	.09176	.09012	.08851	.08691	.08534	.08379	.08226
-1.2	.11507	.11314	.11123	.10935	.10749	.10565	.10383	.10204	.10027	.09853
-1.1	.13567	.13350	.13136	.12924	.12714	.12507	.12302	.12100	.11900	.11702
-1.0	.15866	.15625	.15386	.15151	.14917	.14686	.14457	.14231	.14007	.13786
-0.9	.18406	.18141	.17879	.17619	.17361	.17106	.16853	.16602	.16354	.16109
-0.8	.21186	.20897	.20611	.20327	.20045	.19766	.19489	.19215	.18943	.18673
-0.7	.24196	.23885	.23576	.23270	.22965	.22663	.22363	.22065	.21770	.21476
-0.6	.27425	.27093	.26763	.26435	.26109	.25785	.25463	.25143	.24825	.24510
-0.5	.30854	.30503	.30153	.29806	.29460	.29116	.28774	.28434	.28096	.27760
-0.4	.34458	.34090	.33724	.33360	.32997	.32636	.32276	.31918	.31561	.31207

		-0.3	.38	209	.378	328	.3744	8	.3707	0	.36693	.36	317	.35942	.355	69	.3519	7.	34827	1
		-0.2	.42	074	.416	83	.4129	94	.4090	5	.40517	.40	129	.39743	.393	58	.3897	4.	38591	
		-0.1	.46	017	.456	620	.4522	24	.4482	8	.44433	3.44	038	.43644	.432	251	.4285	8.4	42465	-
		-0.0	.50	000	.496	601	.4920)2	.4880	3	.48405	5.48	006	.47608	.472	210	.4681	2	46414	-
ļ		0.0						-		~ _								- 1.		
	Z		.00		.01		.02		.03		.04		.05	.06		.07	'	.08		.09
0	0.0	.500)00	.50	399	.50)798	.5	51197		51595	.51	994	.52392	.52	2790	.531	188	.535	86
С).1	.539	983	.54	380	.54	1776	.5	5172		55567	.55	962	.56356	.56	6749	.571	142	.575	35
0).2	.579	926	.58	317	.58	3706	.5	9095		59483	.59	871	.60257	.60	642	.610)26	.614	.09
C).3	.617	′ 91	.62	172	.62	2552	.6	2930		63307	.63	683	.64058	.64	431	.648	303	.651	73
0).4	.655	542	.65	910	.66	6276	.6	6640		67003	.67	364	.67724	.68	8082	.684	139	.687	93
0).5	.691	46	.69	497	.69	9847	.7	0194		70540	.70	884	.71226	.71	566	.719	904	.722	.40
0).6	.725	575	.72	907	.73	3237	.7	3565		73891	.74	215	.74537	.74	857	.751	175	.754	.90
0)./	./58	304	./6	115	./(2220	./	6/30		70055	.11.	331	.//63/	.//	935	./82	230	./85	24
0).0) 0	./00	014	.79	050	./:	2009	.1	90/3	•	19900	.00.	234	11000.	.00	200	010.	101	.013	21 001
1	0.9	.010	13/	.01 8/	375	.04 .04	161/	0. 8	18/0		85083	.020	311	855/3	.00	760	850)40)03	.000	91
1	.0	86/	133	-0. 86	650	-0. 86	3864	0. 8	7076		87286	.00.	193	87698	.00	103	881	100	.002	08
1	2	884	193	.00 88	686	.00	3877	 8	9065		89251	.07	435	89617	.07	796	890	73	901	47
1	.3	.903	320	.90	490	.90)658	.9	0824		90988	.91	149	.91309	.91	466	.916	521	.917	'74
1	.4	.919	924	.92	073	.92	2220	.9	2364		92507	.92	647	.92785	.92	922	.930)56	.931	89
1	.5	.933	319	.93	448	.93	3574	.9	3699		93822	.93	943	.94062	.94	179	.942	295	.944	08
1	.6	.945	520	.94	630	.94	1738	.9	4845		94950	.95	053	.95154	.95	5254	.953	352	.954	49
1	.7	.955	543	.95	637	.95	5728	.9	5818		95907	.95	994	.96080	.96	6164	.962	246	.963	27
1	.8	.964	107	.96	485	.96	6562	.9	6638		96712	.96	784	.96856	.96	926	.969	995	.970	62
1	.9	.971	28	.97	'193	.97	7257	.9	7320		97381	.974	441	.97500	.97	'558	.976	615	.976	70
2	2.0	.977	25	.97	778	.97	7831	.9	7882		97932	.97	982	.98030	.98	8077	.981	124	.981	69
2	2.1	.982	214	.98	257	.98	3300	.9	8341		98382	.98	422	.98461	.98	3500	.985	537	.985	74
2	2.2	.986	510	.98	645	.98	3679	.9	8713		98745	.98	778	.98809	.98	8840	.988	370	.988	99
2	2.3	.989	928	.98	956	.98	3983	.9	9010		99036	.99	061	.99086	.99	0111	.991	34	.991	58
2	2.4	.991	80	.99	202	.99	9224	.9	9245		99266	.99	286	.99305	.99	324	.993	343	.993	61
2	2.5	.993	579	.99	1396	.9	9413	.9	9430		99446	.99	461	.99477	.95	492	.995	000	.995	20
2	2.0	.990	52	.99	661	.9	9000	.9	19573		99202	.99	290 702	.99009	.95	1200	.990	002 700	.990	26
2	/) 0	.990	744	.99	752	.9:	0760	.9	0767		99093	.99	702 701	.99711	.98	705	.997	20	.997	207
2	 . 0	997	44 ₹13	.99 00	810	.9:	2825	.9	0831		99774	.99	701 841	99700	.95	1851	990	356	.990	61
2	2.0	990	865	.99 QQ	869	.9. QQ	2874	.0	9878		99090	.99	886	00880	.93 QC	1807	.000	300	990	
3).0 }1	990	203	.00 99	906		9910	 Q	9913		99916	99	918	99921	.00 .00	924	990	126	990	129
3	3.2	.990	931	.99	934	.90	9936	.0	9938		99940	.99	942	.99944	.00	946	.000	948	.000	50
3	3.3	.999	952	.99	953	.99	9955	.9	9957		99958	.99	960	.99961	.90	962	.999	964	.999	65
3	3.4	.999	966	.99	968	.99	9969	.9	9970		99971	.99	972	.99973	.99	974	.999	975	.999	76
3	3.5	.999)77	.99	978	.99	9978	.9	9979		99980	.99	981	.99981	.99	982	.999	983	.999	83
3	8.6	.999	984	.99	985	.99	9985	.9	9986		99986	.99	987	.99987	.99	988	.999	988	.999	89
3	3.7	.999	989	.99	990	.99	9990	.9	9990		99991	.99	991	.99992	.99	992	.999	992	.999	92
3	8.8	.999	993	.99	993	.99	9993	.9	9994		99994	.99	994	.999994	.99	995	.999	995	.999	95
3	3.9	.999	995	.99	995	.99	9996	.9	9996		999996	.99	996	.999996	.99	996	.999	997	.999	97

3. TABEL R

df	Tingkat Signifikansi untuk Tes Satu Sisi				
	0,05	0,025	0,005		
	Tin	igkat Signifik	ansi untuk T	es Dua Sisi	
	0,1	0,05	0,02	0,01	
1	.988	.997	.9995	.9999	
2	.900	.950	.980	.990	
3	.805	.878	.934	.959	
4	.729	.811	.882	.917	
5	.669	.754	.833	.874	
6	.622	.707	.789	.834	
7	.582	.666	.750	.798	
8	.549	.632	.716	.765	
9	.521	.602	.685	.735	
10	.497	.576	.658	.708	
11	.476	.553	.634	.684	
12	.458	.532	.612	.661	
13	.441	.514	.592	.641	
14	.426	.497	.574	.623	
15	.412	.482	.558	.606	
16	.400	.468	.542	.590	
17	.389	.456	.528	.575	
18	.378	.444	.516	.561	
19	.369	.433	.503	.549	
20	.360	.423	.492	.537	
21	.352	.413	.482	.526	
22	.344	.404	.472	.515	
23	.337	.396	.462	.505	
24	.330	.388	.453	.496	
25	.323	.381	.445	.487	
26	.317	.374	.437	.479	
27	.311	.367	.430	.471	
28	.306	.361	.423	.463	
29	.301	.355	.416	.456	
30	.296	.349	.409	.449	
35	.275	.325	.381	.418	
40	.257	.304	.358	.393	
45	.243	.288	.338	.372	
50	.231	.273	.322	.354	
60	.211	.250	.295	.325	
70	.195	.232	.274	.303	
80	.183	.217	.256	.283	
90	.173	.205	.242	.267	
100	.164	.195	.230	.254	

Sumber : Nasir, Moh, 1985, Metode Penelitian cetakan pertama, Jakarta : Ghalia Indonesia.

4. TABEL ORDINAT NORMAL

z	Below z	Above z	Between	Ordinate
0	0.5	0.5		0 3989
0	0.504	0.496	0.004	0.3989
0	0,508	0,492	0,008	0,3989
0	0,512	0,488	0,012	0,3988
0	0,516	0,484	0,016	0,3986
0,1	0,5199	0,4801	0,0199	0,3984
0,1	0,5239	0,4761	0,0239	0,3982
0,1	0,5279	0,4721	0,0279	0,398
0,1	0,5319	0,4681	0,0319	0,3977
0,1	0,5359	0,4641	0,0359	0,3973
0,1	0,5398	0,4602	0,0398	0,397
0,1	0,5438	0,4562	0,0438	0,3965
0,1	0,5478	0,4522	0,0478	0,3961
0,1	0,5517	0,4483	0,0517	0,3956
0,1	0,5557	0,4443	0,0557	0,3951
0,2	0,5596	0,4404	0,0596	0,3945
0,2	0,5636	0,4364	0,0636	0,3939
0,2	0,5675	0,4325	0,0675	0,3932
0,2	0,5714	0,4286	0,0714	0,3925
0,2	0,5753	0,4247	0,0753	0,3918
0,2	0,5793	0,4207	0,0793	0,391
0,2	0,5832	0,4168	0,0832	0,3902
0,2	0,5871	0,4129	0,0871	0,3894
0,2	0,591	0,409	0,091	0,3885
0,2	0,5948	0,4052	0,0948	0,3876
0,3	0,5987	0,4013	0,0987	0,3867
0,3	0,6026	0,3974	0,1026	0,3857
0,3	0,6064	0,3936	0,1064	0,3847
0,3	0,6103	0,3897	0,1103	0,3836
0,3	0,6141	0,3859	0,1141	0,3825
0,3	0,6179	0,3821	0,1179	0,3814
0,3	0,6217	0,3783	0,1217	0,3802
0,3	0,6255	0,3745	0,1255	0,379
0,3	0,6293	0,3707	0,1293	0,3778
0,3	0,6331	0,3669	0,1331	0,3765
0,4	0,6368	0,3632	0,1368	0,3752
0,4	0,6406	0,3594	0,1406	0,3739
0,4	0,6443	0,3557	0,1443	0,3725
0,4	0,648	0,352	0,148	0,3712
0,4	0,6517	0,3483	0,1517	0,3697
0,4	0,6554	0,3446	0,1554	0,3683
0,4	0,6591	0,3409	0,1591	0,3668
0,4	0,6628	0,3372	0,1628	0,3653
0,4	0,6664	0,3336	0,1664	0,3637
0,4	0,67	0,33	0,17	0,3621
0,5	0,6736	0,3264	0,1736	0,3605

			Between	
z	Below z	Above z	mean and z	Ordinate
0,5	0,6772	0,3228	0,1772	0,3589
0,5	0,6808	0,3192	0,1808	0,3572
0,5	0,6844	0,3156	0,1844	0,3555
0,5	0,6879	0,3121	0,1879	0,3538
0,5	0,6915	0,3085	0,1915	0,3521
0,5	0,695	0,305	0,195	0,3503
0,5	0,6985	0,3015	0,1985	0,3485
0,5	0,7019	0,2981	0,2019	0,3467
0,5	0,7054	0,2946	0,2054	0,3448
0,6	0,7088	0,2912	0,2088	0,3429
0,6	0,7123	0,2877	0,2123	0,341
0,6	0,7157	0,2843	0,2157	0,3391
0,6	0,719	0,281	0,219	0,3372
0,6	0,7224	0,2776	0,2224	0,3352
0,6	0,7257	0,2743	0,2257	0.3332
0.6	0.7291	0.2709	0.2291	0.3312
0.6	0.7324	0.2676	0.2324	0.3292
0.6	0.7356	0.2644	0.2356	0.3271
0.6	0.7389	0.2611	0.2389	0.3251
0.7	0.7421	0.2579	0.2421	0.323
0.7	0,7454	0.2546	0,2454	0.3209
0.7	0 7486	0 2514	0 2486	0.3187
0.7	0,7517	0.2483	0.2517	0.3166
0.7	0,7549	0.2451	0.2549	0.3144
0.7	0.758	0.242	0.258	0.3123
0.7	0.7611	0.2389	0.2611	0.3101
0.7	0.7642	0.2358	0.2642	0.3079
0.7	0.7673	0.2327	0.2673	0.3056
0.7	0.7703	0.2297	0.2703	0.3034
0.8	0.7734	0.2266	0.2734	0.3011
0.8	0 7764	0 2236	0 2764	0 2989
0.8	0,7793	0.2207	0,2793	0.2966
0.8	0.7823	0.2177	0.2823	0.2943
0.8	0.7852	0.2148	0.2852	0.292
0.8	0.7881	0.2119	0.2881	0.2897
0.8	0.791	0.209	0.291	0.2874
0.8	0.7939	0.2061	0.2939	0.285
0.8	0.7967	0.2033	0.2967	0.2827
0.8	0,7995	0,2005	0.2995	0.2803
0.9	0.8023	0.1977	0.3023	0.278
0.9	0.8051	0,1949	0.3051	0.2756
0.9	0.8078	0.1922	0.3078	0.2732
0.9	0.8106	0.1894	0.3106	0.2709
0.9	0.8133	0,1867	0.3133	0.2685
0.9	0.8159	0.1841	0.3159	0.2661
0.9	0.8186	0.1814	0.3186	0.2637
0.9	0.8212	0.1788	0.3212	0.2613

_	Dalama	A I	Between	Outlingto
z	Below z	Above z	mean and z	Ordinate
0,9	0,8238	0,1762	0,3238	0,2589
0,9	0,8264	0,1736	0,3264	0,2565
1	0,8289	0,1711	0,3289	0,2541
1	0,8315	0,1685	0,3315	0,2516
1	0,834	0,166	0,334	0,2492
1	0,8364	0,1636	0,3364	0,2468
1	0,8389	0,1611	0,3389	0,2444
1	0,8413	0,1587	0,3413	0,242
1	0,8437	0,1563	0,3437	0,2396
1	0,8461	0,1539	0,3461	0,2371
1	0,8485	0,1515	0,3485	0,2347
1	0,8508	0,1492	0,3508	0,2323
1,1	0,8531	0,1469	0,3531	0,2299
1,1	0,8554	0,1446	0,3554	0,2275
1,1	0,8577	0,1423	0,3577	0,2251
1,1	0,8599	0,1401	0,3599	0,2227
1,1	0,8621	0,1379	0,3621	0,2203
1,1	0,8643	0,1357	0,3643	0,2179
1,1	0,8665	0,1335	0,3665	0,2155
1,1	0,8686	0,1314	0,3686	0,2131
1,1	0,8707	0,1293	0,3707	0,2107
1,1	0,8728	0,1272	0,3728	0,2083
1,2	0,8749	0,1251	0,3749	0,2059
1,2	0,877	0,123	0,377	0,2036
1,2	0,879	0,121	0,379	0,2012
1,2	0,881	0,119	0,381	0,1989
1,2	0,883	0,117	0,383	0,1965
1,2	0,8849	0,1151	0,3849	0,1942
1,2	0,8868	0,1132	0,3868	0,1919
1,2	0,8887	0,1113	0,3887	0,1895
1,2	0,8906	0,1094	0,3906	0,1872
1,2	0,8925	0,1075	0,3925	0,1849
1,3	0,8943	0,1057	0,3943	0,1826
1,3	0,8961	0,1039	0,3961	0,1804
1,3	0,8979	0,1021	0,3979	0,1781
1,3	0,8997	0,1003	0,3997	0,1758
1,3	0,9015	0,0985	0,4015	0,1736
1,3	0,9032	0,0968	0,4032	0,1714
1,3	0,9049	0,0951	0,4049	0,1691
1,3	0,9066	0,0934	0,4066	0,1669
1,3	0,9082	0,0918	0,4082	0,1647
1,3	0,9099	0,0901	0,4099	0,1626
1,4	0,9115	0,0885	0,4115	0,1604
1,4	0,9131	0,0869	0,4131	0,1582
1,4	0,9146	0,0854	0,4146	0,1561
1,4	0,9162	0,0838	0,4162	0,1539
1,4	0,9177	0,0823	0,4177	0,1518

			Between	
z	Below z	Above z	mean and z	Ordinate
1,4	0,9192	0,0808	0,4192	0,1497
1,4	0,9207	0,0793	0,4207	0,1476
1,4	0,9222	0,0778	0,4222	0,1456
1,4	0,9236	0,0764	0,4236	0,1435
1,4	0,925	0,075	0,425	0,1415
1,5	0,9264	0,0736	0,4264	0,1394
1,5	0,9278	0,0722	0,4278	0,1374
1,5	0,9292	0,0708	0,4292	0,1354
1,5	0,9305	0,0695	0,4305	0,1334
1,5	0,9319	0,0681	0,4319	0,1315
1,5	0,9332	0,0668	0,4332	0,1295
1,5	0,9345	0,0655	0,4345	0,1276
1,5	0,9357	0,0643	0,4357	0,1257
1,5	0,937	0,063	0,437	0,1238
1,5	0,9382	0,0618	0,4382	0,1219
1,6	0,9394	0,0606	0,4394	0,12
1,6	0,9406	0,0594	0,4406	0,1182
1,6	0,9418	0,0582	0,4418	0,1163
1,6	0,9429	0,0571	0,4429	0,1145
1,6	0,9441	0,0559	0,4441	0,1127
1,6	0,9452	0,0548	0,4452	0,1109
1,6	0,9463	0,0537	0,4463	0,1092
1,6	0,9474	0,0526	0,4474	0,1074
1,6	0,9484	0,0516	0,4484	0,1057
1,6	0,9495	0,0505	0,4495	0,104
1,7	0,9505	0,0495	0,4505	0,1023
1,7	0,9515	0,0485	0,4515	0,1006
1,7	0,9525	0,0475	0,4525	0,0989
1,7	0,9535	0,0465	0,4535	0,0973
1,7	0,9545	0,0455	0,4545	0,0957
1,7	0,9554	0,0446	0,4554	0,094
1,7	0,9563	0,0437	0,4563	0,0925
1,7	0,9573	0,0427	0,4573	0,0909
1,7	0,9582	0,0418	0,4582	0,0893
1,7	0,959	0,041	0,459	0,0878
1,8	0,9599	0,0401	0,4599	0,0863
1,8	0,9608	0,0392	0,4608	0,0848
1,8	0,9616	0,0384	0,4616	0,0833
1,8	0,9624	0,0376	0,4624	0,0818
1,8	0,9632	0,0368	0,4632	0,0804
1,8	0,964	0,036	0,464	0,079
1,8	0,9648	0,0352	0,4648	0,0775
1,8	0,9656	0,0344	0,4656	0,0761
1,8	0,9663	0,0337	0,4663	0,0748
1,8	0,9671	0,0329	0,4671	0,0734
1,9	0,9678	0,0322	0,4678	0,0721
1,9	0,9685	0,0315	0,4685	0,0707

			Between	
z	Below z	Above z	mean and z	Ordinate
1,9	0,9692	0,0308	0,4692	0,0694
1,9	0,9699	0,0301	0,4699	0,0681
1,9	0,9706	0,0294	0,4706	0,0669
1,9	0,9713	0,0287	0,4713	0,0656
1,9	0,9719	0,0281	0,4719	0,0644
1,9	0,9725	0,0275	0,4725	0,0632
1,9	0,9732	0,0268	0,4732	0,062
1,9	0,9738	0,0262	0,4738	0,0608
2	0,9744	0,0256	0,4744	0,0596
2	0,975	0,025	0,475	0,0584
2	0,9755	0,0245	0,4755	0,0573
2	0,9761	0,0239	0,4761	0,0562
2	0,9767	0,0233	0,4767	0,0551
2	0,9772	0,0228	0,4772	0,054
2	0,9777	0,0223	0,4777	0,0529
2	0,9783	0,0217	0,4783	0,0519
2	0,9788	0,0212	0,4788	0,0508
2	0,9793	0,0207	0,4793	0,0498
2,1	0,9798	0,0202	0,4798	0,0488
2,1	0,9803	0,0197	0,4803	0,0478
2,1	0,9807	0,0193	0,4807	0,0468
2,1	0,9812	0,0188	0,4812	0,0459
2,1	0,9817	0,0183	0,4817	0,0449
2,1	0,9821	0,0179	0,4821	0,044
2,1	0,9825	0,0175	0,4825	0,0431
2,1	0,983	0,017	0,483	0,0422
2,1	0,9834	0,0166	0,4834	0,0413
2,1	0,9838	0,0162	0,4838	0,0404
2,2	0,9842	0,0158	0,4842	0,0396
2,2	0,9846	0,0154	0,4846	0,0387
2,2	0,985	0,015	0,485	0,0379
2,2	0,9853	0,0147	0,4853	0,0371
2,2	0,9857	0,0143	0,4857	0,0363
2,2	0,9861	0,0139	0,4861	0,0355
2,2	0,9864	0,0136	0,4864	0,0347
2,2	0,9868	0,0132	0,4868	0,0339
2,2	0,9871	0,0129	0,4871	0,0332
2,2	0,9874	0,0126	0,4874	0,0325
2,3	0,9877	0,0123	0,4877	0,0317
2,3	0,9881	0,0119	0,4881	0,031
2,3	0,9884	0,0116	0,4884	0,0303
2,3	0,9887	0,0113	0,4887	0,0297
2,3	0,989	0,011	0,489	0,029
2,3	0,9892	0,0108	0,4892	0,0283
2,3	0,9895	0,0105	0,4895	0,0277
2,3	0,9898	0,0102	0,4898	0,027
2.3	0.9901	0.0099	0.4901	0.0264

			Between	
z	Below z	Above z	mean and z	Ordinate
2,3	0,9903	0,0097	0,4903	0,0258
2,4	0,9906	0,0094	0,4906	0,0252
2,4	0,9908	0,0092	0,4908	0,0246
2,4	0,9911	0,0089	0,4911	0,0241
2,4	0,9913	0,0087	0,4913	0,0235
2,4	0,9915	0,0085	0,4915	0,0229
2,4	0,9918	0,0082	0,4918	0,0224
2,4	0,992	0,008	0,492	0,0219
2,4	0,9922	0,0078	0,4922	0,0213
2,4	0,9924	0,0076	0,4924	0,0208
2,4	0,9926	0,0074	0,4926	0,0203
2,5	0,9928	0,0072	0,4928	0,0198
2,5	0,993	0,007	0,493	0,0194
2,5	0,9932	0,0068	0,4932	0,0189
2,5	0,9934	0,0066	0,4934	0,0184
2,5	0,9936	0,0064	0,4936	0,018
2,5	0,9938	0,0062	0,4938	0,0175
2,5	0,9939	0,0061	0,4939	0,0171
2,5	0,9941	0,0059	0,4941	0,0167
2,5	0,9943	0,0057	0,4943	0,0163
2,5	0,9944	0,0056	0,4944	0,0158
2,6	0,9946	0,0054	0,4946	0,0154
2,6	0,9947	0,0053	0,4947	0,0151
2,6	0,9949	0,0051	0,4949	0,0147
2,6	0,995	0,005	0,495	0,0143
2,6	0,9952	0,0048	0,4952	0,0139
2,6	0,9953	0,0047	0,4953	0,0136
2,6	0,9954	0,0046	0,4954	0,0132
2,6	0,9956	0,0044	0,4956	0,0129
2,6	0,9957	0,0043	0,4957	0,0126
2,6	0,9958	0,0042	0,4958	0,0122
2,7	0,9959	0,0041	0,4959	0,0119
2,7	0,9961	0,0039	0,4961	0,0116
2,7	0,9962	0,0038	0,4962	0,0113
2,7	0,9963	0,0037	0,4963	0,011
2,7	0,9964	0,0036	0,4964	0,0107
2,7	0,9965	0,0035	0,4965	0,0104
2,7	0,9966	0,0034	0,4966	0,0101
2,7	0,9967	0,0033	0,4967	0,0099
2,7	0,9968	0,0032	0,4968	0,0096
2,7	0,9969	0,0031	0,4969	0,0093
2,8	0,997	0,003	0,497	0,0091
2,8	0,9971	0,0029	0,4971	0,0088
2,8	0,9972	0,0028	0,4972	0,0086
2,8	0,9972	0,0028	0,4972	0,0084
2,8	0,9973	0,0027	0,4973	0,0081
2,8	0,9974	0,0026	0,4974	0,0079

z	Below z	Above z	Between mean and z	Ordinate
2,8	0,9975	0,0025	0,4975	0,0077
2,8	0,9976	0,0024	0,4976	0,0075
2,8	0,9976	0,0024	0,4976	0,0073
2,8	0,9977	0,0023	0,4977	0,0071
2,9	0,9978	0,0022	0,4978	0,0069
2,9	0,9978	0,0022	0,4978	0,0067
2,9	0,9979	0,0021	0,4979	0,0065
2,9	0,998	0,002	0,498	0,0063
2,9	0,998	0,002	0,498	0,0061
2,9	0,9981	0,0019	0,4981	0,006
2,9	0,9982	0,0018	0,4982	0,0058
2,9	0,9982	0,0018	0,4982	0,0056
2,9	0,9983	0,0017	0,4983	0,0055
2,9	0,9983	0,0017	0,4983	0,0053
3	0,9984	0,0016	0,4984	0,0051
3	0,9984	0,0016	0,4984	0,005
3	0,9985	0,0015	0,4985	0,0048
3	0,9985	0,0015	0,4985	0,0047
3	0,9986	0,0014	0,4986	0,0046

RIWAYAT HIDUP PENULIS

Dr. Ratna Jatnika, MT., lahir di Bandung 2 Desember 1963. Menyelesaikan pendidikan S1 di Jurusan Statistika FMIPA Unpad dan S2 serta S3 di Teknik dan Manajemen Industri ITB.

Sejak tahun 1988 bekerja sebagai dosen tetap di Fakultas Psikologi Universitas Padjadjaran untuk mata kuliah Sta-

tistika, Psikometri, Konstruksi Tes, Psikologi Eksperimen dan Pemodelan Sistem.

Penulis tertarik untuk mengembangkan metode pembelajaran statistika agar menjadi suatu pembelajaran yang mudah dan diminati mahasiswa. Bersama Dr. Fitri Ariyanti Abidin, M.Psi., ia tergabung dalam working group Statistics Education. Dalam working group ini, penelitian-penelitian mengenai proses pembelajaran statistika untuk mahasiswa dilakukan dan hasilnya telah dipublikasikan. Pada tahun 2021, working group Statistics Education ambil bagian dalam penelitian validasi alat ukur kecemasan terhadap matematika dan statistic yang digagas oleh tim peneliti dari Sussex University, Inggris bersama kolaborator dari 34 negara lainnya.

Penulis mulai mengembangkan software Statistik Unpad SAS sejak tahun 2014. Berbagai karya tulis penulis antara lain adalah:

- 1. Belajar Statistika dengan Unpad SAS Edisi 1
- 2. Belajar Statistika dengan Unpad SAS Edisi 2
- 3. Belajar Sampling dengan Unpad SAS Online

RIWAYAT HIDUP PENULIS

Mustofa Haffas, SH., M.Kom, lahir di Tasikmalaya 17 Desember 1960. Menyelesaikan pendidikan S1 di Fakultas Hukum Universitas Padjadjaran Bandung dan S2 di STMIK LIKMI Bandung.

Sejak tahun 1992 bekerja sebagai dosen tetap di Fakultas Hukum Universitas Padjadjaran untuk mata kuliah Pengantar Hukum Indonesia, Antropologi Budaya, Sosiologi

Hukum, dan *Cyber Law*.

Mengenal dunia pemrograman komputer sejak tahun 1980 ketika menempuh pendidikan di Jurusan Statistika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Padjadjaran Bandung, dan sejumlah pendidikan informal di bidang komputer.

Meraih prestasi sebagai Juara II pada Lomba Kreatifitas Program Komputer Tingkat Nasional 1989 dan Juara I pada Kompetisi Piranti Lunak Komputer Tingkat Nasional 1995.

Beberapa karya ilmiah yang telah dibuat penulis adalah:

- 1. Jurisprudence: Sistem Manajemen Pengetahuan Hukum "Terdistribusi-Terpusat"
- 2. Indonesian Dynamic Domain Name System
- 3. Virtual Classroom
- 4. Belajar Statistika dengan Unpad SAS Edisi 1
- 5. Belajar Statistika dengan Unpad SAS Edisi 2
- 6. Belajar Sampling dengan Unpad SAS Online

RIWAYAT HIDUP PENULIS

Dr. Ahmad Gimmy Prathama Siswadi. M.Si., Psikolog. Biasa dipanggil Kang Gimmy oleh mahasiswanya, adalah lulusan asli Psikologi Universitas Padjadjaran, karena S1 (1981-1988), S2 (1991-1995), S3 (2003-2009) diselesaikan seluruhnya di almamater tercintanya tersebut. Psikolog Klinis yang banyak terlibat dengan psikologi positif, terutama ketika membuat proposal

disertasi tahun 2003-2004 yang akhirnya tuntas diselesaikan pada tahun 2009. Sejak itu, sudah banyak skripsi, tesis dan disertasi yang ia bimbing terkait dengan religiositas, kesejahteraan subjektif, forgiveness, positive intervention, dan yang terkait dengan tema psikologi positif. Pemilik brevet psikoterapis CBT (Cognitive Behavior Therapy)-2010 hasil kerjasama antara PKP3 (Pusat Kajian dan Pengembangan Profesi Psikologi) Universitas Padjadjaran dengan Rino Groep Utrecht, sangat tertarik dengan terapan psikologi positif dalam intervensi psikologi klinis. Psikologi positif bukan hanya mengembalikan individu bermasalah pada posisinya semula, namun berupaya membuat manusia tumbuh dan berkembang optimal sesuai dengan kekuatan dan potensi unik yang dimilikinya. Selain menulis beberapa artikel tentang psikoterapi pada beberapa jurnal dan buku tahunan Himpsi 2015, pengajar psikodiagnostik, psikoterapi, kriminologi, dan psikologi forensik, ini juga menjadi menulis pendamping pada buku "Psikologi Korupsi" (2015), dan "Korupsi Politik di Parlemen" (2019) berdasarkan penelitiannya dengan penulis utama Dr. Zainal Abidin, M.Si.

